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ABSTRACT: General Lagrangians are constructed for N=2 supersymmetric gauge theories
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netic charges. The charges induce a scalar potential, which, when the charges are regarded
as spurionic quantities, is invariant under electric/magnetic duality. The resulting theories
are especially relevant for supergravity, but details of the extension to local supersymmetry
will be discussed elsewhere. The results include the coupling to hypermultiplets. Without
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1. Introduction

In four space-time dimensions, theories with abelian gauge fields may have more sym-
metries than are apparent from the Lagrangian (or the corresponding action). The full
invariance group may include symmetries of the combined field equations and Bianchi
identities that are not realized at the level of the Lagrangian. This group is a subgroup
of the electric/magnetic duality group, which, for n vector fields, is equal to Sp(2n,R).
Under a generic electric/magnetic duality the Lagrangian will in general change, but the
new Lagrangian will still lead to an equivalent set of field equations and Bianchi identi-
ties. Therefore these different Lagrangians, which do not have to share the same symmetry
group, belong to the same equivalence class. When the Lagrangian does not change under
a duality (possibly after combining with corresponding transformations of the other fields)
one is dealing with an invariance of the theory. To appreciate this feature, it is important to
note that a Lagrangian does not transform as a function under duality transformations. In
fact the gauge fields before and after the transformation are not related by a local field re-
definition. This is the underlying reason why the full invariance is not necessarily reflected
by an invariance of the Lagrangian that is induced by transformations of the various fields.

When introducing charges for some of the fields, the standard procedure is to introduce
minimal couplings and covariant field strengths in the Lagrangian. This implies that the
charges are all electric. The gauge group will therefore be contained in the invariance
group of the Lagrangian, so that one cannot necessarily gauge any subgroup of the full
invariance group. In that case one has two options. Either one uses electric/magnetic



duality to obtain another Lagrangian belonging to the same equivalence class that has
a more suitable invariance group in which the desired gauge group can be embedded,
or, one uses a recently proposed formalism that incorporates both electric and magnetic
charges [[l. The latter allows one to start from any particular Lagrangian belonging to a
certain equivalence class, provided that this class contains at least one Lagrangian in which
all the charges that one intends to switch on are electric.

In this paper we study general gaugings of N = 2 supersymmetric gauge theories,
based on vector multiplets and hypermultiplets. It is well known that the introduction of
charged fields in a supersymmetric field theory tends to break supersymmetry. To preserve
supersymmetry the theory has to be extended with a scalar potential and masslike terms.
The goal is to derive these terms in the context of the formalism presented in [I]. It is not the
first time that this formalism has been used for four-dimensional supersymmetric theories.
In [f] it was successfully applied to N = 4 supergravity and in [f] to N = 8 supergravity. In
this approach the cumbersome procedure according to which the ungauged Lagrangian has
to be converted to a suitable electric frame, prior to switching on the charges, is avoided.
Moreover, the scalar potential and masslike terms that accompany the gaugings are found
in a way that is independent of the electric/magnetic duality frame. By introducing both
electric and magnetic charges the potential will thus fully exhibit the duality invariances.
This is of interest, for example, when studying flux compactifications in string theory,
because the underlying fluxes are usually subject to integer-valued rotations associated to
the non-trivial cycles of the underlying internal manifold.

The framework of [[] incorporates both electric and magnetic charges and their corre-
sponding gauge fields. The charges are encoded in terms of a so-called embedding tensor,
which defines the embedding of the gauge group into the full rigid invariance group. This
embedding tensor is treated as a spurionic object, so that the electric/magnetic duality
structure of the ungauged theory is preserved after charges are turned on. Besides intro-
ducing a set of dual magnetic gauge fields, tensor fields are required that transform in the
adjoint representation of the rigid invariance group. These extra fields carry additional off-
shell degrees of freedom, but the number of physical degrees of freedom remains the same,
owing to extra gauge transformations. Prior to [l it had already been discovered that
magnetic charges tend to be accompanied by tensor fields. An early example of this was
presented in [A], and subsequently more theories with magnetic charges and tensor fields
were constructed, for instance, in [J|—[]. However, in these references the gauge groups are
abelian.

The starting point of this paper is the expression for N = 2 supersymmetric La-
grangians of n vector supermultiplets, labeled by indices A = 1,...,n. This Lagrangian is
encoded in terms of a holomorphic function F(X), which, for the abelian case, takes the
following form,

a1 _ o1 1 y
Lo =10, Fy "X + §iFAE QA 90 + ZiFAE Fo A F=m giFAZ v Ay
1. - 1. _ o
—|—§1 Fasr YZ]A QZZQE — EIFAEF QiA,-YlWQg ¥ Fiul,2

1 .. _ =
—Eig%kl Fasrs QM7 Q5 OF + hee. (1.1)



where F},...a, denotes the k-th derivative of F(X). The fermion fields Q* and the auxiliary
fields YA carry SU(2) indices 4, 7, ... = 1,2. Spinors Q;* have positive, and spinors Q** have
negative chirality (so that Q% = Q4 and 4°Q* = —Q*). The auxiliary fields satisfy
the pseudo-reality constraint (Y;jA)* :EikaﬂYﬁl. The tensors F i/\ are the (anti-)selfdual
components of the field strengths, which will be expressed in terms of vector fields AMA.
Even when all charges are electric it is possible that the function F(X) is not invariant
under the gauge group. In that case the gauge group must be non-semisimple [§]. The gauge
group for the hypermultiplets can be either abelian or non-abelian, but a non-trivial gauge

group for the vector multiplets is always non-abelian, possibly with a central extension.

The supersymmetric Lagrangians derived in this paper incorporate gaugings in both
the vector and hypermultiplet sectors. Although the vector multiplets are originally defined
as off-shell multiplets, the presence of the magnetic charges causes a breakdown of off-shell
supersymmetry. Of course, hypermultiplets are not based on an off-shell representation
of the supersymmetry algebra irrespective of the presence of charges. It is an interest-
ing question whether the results of this section can be reformulated such that the vector
multiplets retain their off-shell form and, indeed, we show that such an off-shell version
can be constructed based on vector and tensor supermultiplets. However, we refrain from
considering the extension of the theories of this paper to supergravity. This extension is
expected to be straightforward upon use of the superconformal multiplet calculus [§—[L0].
We intend to return to this topic elsewhere.

This paper is organized as follows. In section f] we recall the relevant features of N = 2
vector multiplets and electric/magnetic duality, and discuss the introduction of electric
and magnetic charges. In section [§ we introduce the embedding tensor and we review the
formalism of [fl]. Section ] deals with the restoration of supersymmetry in vector multiplet
models after a gauging, and section [ gives the extension with hypermultiplets. The off-
shell formulation of the theories of this paper is discussed in section f], and in section [ we
summarize the results obtained and briefly indicate some of their applications.

2. Vector multiplets, electric/magnetic duality, and non-abelian charges

In this section we discuss electric/magnetic duality and the introduction of charges for sys-
tems of vector supermultiplets. To facilitate the presentation it is convenient to decompose
the Lagrangian ([L.1]) as follows,

‘CO = Ematter + Ekin + EQ4 + LY ) (21)
where Liatter contains the kinetic terms of the scalar and spinor fields,

['matter = i<auFA 8MXA - aMFA 8MXA>

1 . _ 4 1./- ; -
—1Nas (QM@QF v QiA@QZE> ~ Z1<Q,~A¢9FAEQ Q0 A@FAZQF> . (2.2)



The kinetic terms of the vector fields combined with a number of terms that are related to
them by electric/magnetic duality, are contained in Lyector,

1, A S _ 5
Lyector = _I(FAZFMVAF u —FAEFJLAF—FZM)

1 _ _ . :
——I(FAgpQA ’WF QF g FAEFQZA ’Y’WFJLE QJF 5ij>

16
256 iNA9 <FAAEQz VoS )(FI‘”QQk Yy Ze kl)
+%1NAQ <FAAEQiA7ﬂij26¢j) (FFEQQkF’y“VQlEekl> . (2.3)

Quartic spinor terms that are consistent with respect to electric/magnetic duality, are given

by

1 —
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and, finally, £y comprises the terms associated with the auxiliary fields Y;jA,
1 1. _ _ _
ﬁy = gNAE (NAFY + §I(FAFQ QZ‘FQ]‘Q - FAFQ QkFQlQEik&“jl)>
| _ o _ _
X (NEEY”: + 5i(Fsza Q=0 2™ — Fyza QZ:QJA)> : (2.5)

This last result for Ly is not obviously consistent with electric/magnetic duality. We return
to this in a sequal. Here and henceforth we use the notation,

Npy = —iFps +iFyy, N =[N (2.6)

Note that Nax plays the role of the inverse effective coupling constants while the real part
of Fax; plays the role of the generalized theta angles.

The non-linear sigma model contained in (B.J) exhibits an interesting geometry known
as special geometry. The complex scalars X parametrize an n-dimensional target space
with metric gy = Nay. This is a Kéhler space: its metric equals g 5 = 9*°K (X, X)/
OXM 0X*>, with Kahler potential

K(X,X)=iX" F\(X) —iX} Fy(X). (2.7)

The supersymmetry transformations that leave the action corresponding to (R.I]) in-
variant, are given by

oxM = @oh,
5AN

ey + et
1 ) .
(SQiA = Q@XAGZ‘ + §’YHVF};,A€Z‘J‘€J + YVijAEJ,
(5YijA = QE(Z'@Q]')A + 25ik5jl E(k@Ql)A . (2.8)



In the absence of charged fields, abelian gauge fields AHA appear exclusively through
the field strengths, F; WA =2 O[MAV]A (we consider Lagrangians that are at most quadratic
in derivatives). The field equations for these fields and the Bianchi identities for the field
strengths comprise 2n equations,

a[qup]A =0=9,Gyya, (2.9)
where or
GMVA = Euvpo m . (210)
In the case at hand this implies,
_ _ 1 _ g
G;WA = Fay F;WE - gFAEF QiE’YuVQjF e . (211)

It is convenient to combine the tensors F, WA and G, into a 2n-dimensional vector,

E.A
G = < g > : (2.12)

G urvA

so that (R.9) reads 8[MGVp]M = 0. Obviously these 2n equations are invariant under real
2n-dimensional rotations of the tensors GWM ,

FA UAE ZAE FE
— . (2.13)
G Wiy Vp® Gx

Half of the rotated tensors can be adopted as new field strengths defined in terms of new
gauge fields, and the Bianchi identities on the remaining tensors can then be interpreted
as field equations belonging to some new Lagrangian expressed in terms of the new field
strengths. In order that such a Lagrangian exists, the real matrix in (2.13) must belong to

the group Sp(2n;R). This group consists of real matrices that leave the skew-symmetric

01
0= (_1 o) . (2.14)

The conjugate matrix QM is defined by QN Qxp = —6M p. Here we employ an Sp(2n, R)

tensor 2,7 invariant,

covariant notation for the 2n-dimensional symplectic indices M, N, ..., such that ZM =
(ZM, Zy). Likewise we use vectors with lower indices according to Yy = (Ya,Y?), trans-
forming according to the conjugate representation so that ZM Y), is invariant.

The Sp(2n; R) transformations are known as electric/magnetic dualities, which also act
on electric and magnetic charges (for a review of electric/magnetic duality, see [[[]). The
Lagrangian depends on the electric/magnetic duality frame and is therefore not unique.!
Different Lagrangians related by electric/magnetic duality lead to equivalent field equations
and thus belong to the same equivalence class. These alternative Lagrangians remain

1Up to terms proportional to the field equations of the vector fields and the auxiliary fields, the La-
grangian is covariant under electric/magnetic duality.



supersymmetric and when applying suitable redefinitions to the other fields, they can
again be brought into the form (R.3), characterized by a new holomorphic function F(X).
In other words, different functions F'(X) can belong to the same equivalence class. The
new function is such that the vector X™ = (X, F\) transforms under electric/magnetic
duality according to

XA XA UA2 ZAZ Xz
B i . (2.15)
Fy Fa Wiz Vi™ Fy
The new function F(X) of the new scalars X follows from integration of (B-15) and takes
the form

F(X)=F(X) - %XAFA(X) + %(UTW)AZXAXE

+%(UTV + WTIZZ\EXA P (X) + %(ZTV)AZFA(X)FZ (X)), (2.16)

up to a constant and to terms linear in the X*. These terms, which will be ignored in what
follows, cannot be present in the case of local supersymmetry. In general it is not easy to
determine F(X) from (2.1G) as it involves the inversion of X = UAsX™> + ZA¥Fy(X).
The duality transformations on higher derivatives of F'(X) follow by differentiation and we
note the results [[[7],

Frs(X) = (VA Fr= + Waz) [S s,
Fasr(X) = Feao [STEA ST ST, (2.17)

where Sy, = 9XA JOX¥ =U As 4+ ZAU Brs,. From the first equation one derives,

Nan(X,X) = Npa [STPA 8712 (2.18)

To determine the action of the dualities on the fermions, we consider supersymmetry
transformations of XM = (X, Fy), which take the form §X™ = &Q; thus defining an

Sp(2n,R) covariant fermionic vector Q;,

QA
QM = . (2.19)
Fps Q%

Complex conjugation leads to a second vector, QM | of opposite chirality. From (19 one
derives directly that, under electric/magnetic duality,

Qt =Sty Q. (2.20)

With this result one can show that (E.la), (El 1) and (R:20) are consistent.
The supersymmetry transformation of ;" takes the following form,

1 ) )
5QZ’M = Q@XMGZ' + 5’)’“”G;VM€U‘6] + ZijMEJ R (2.21)



where

VA
ZiM = - N E (2.22)
Fas Yij™ — sFasr Q79

This suggests that ZijM transforms under electric/magnetic duality as a symplectic vector.
However, this is only possible provided we drop the pseudo-reality constraint on YijA.
In that case imposing a pseudo-reality condition on ZijM is manifestly consistent with
Sp(2n;R) and implies both the pseudo-reality of and the field equations associated with
the YVZ']'A.

The electric/magnetic duality transformations thus define equivalence classes of La-
grangians. A subgroup thereof may constitute an invariance of the theory [[J], meaning
that the Lagrangian and its underlying function F(X) do not change [0, [[4]. More specif-
ically, an invariance implies

F(X)=F(X), (2.23)
so that the result of the duality leads to a Lagrangian based on F (X' ) which is identical
to the original Lagrangian. Because F(X) # F(X), as is obvious from (2:1), F(X) is not
an invariant function. Instead the above equation implies that the substitution X* — XA
into the function F(X) and its derivatives, induces precisely the duality transformations.
For example, we obtain,

FA(X) = VAEFs(X) + Was X ™,
Frs(X) = (VA Fr= + Waz) [S s,
FAgp(X) = Fza0 [S_l]EA [S_l]Az; [S_l]Qp . (2.24)

We elucidate these invariances for the subgroup that acts linearly on the gauge fields
A, These symmetries are characterized by the fact that the matrix in (2:13) and (2-19)
has a block-triangular form with V' = [UT]~! and Z = 0. Hence this is not a general duality
as the Lagrangian is still based on the same gauge fields, up to the linear transformation
AN — AMA = U*5A,". Note that all fields in the Lagrangian (2.J) carry upper indices
and are thus subject to the same linear transformation. The function F'(X) changes with
an additive term which is a quadratic polynomial with real coefficients.

g 1
F(X)=FU*sX®) = F(X) + i(UTW)Ag XAXE, (2.25)
This term induces a total derivative term in the Lagrangian, equal to
1
L—L— gieWW(UTW) An Fu ™. (2.26)

2.1 Gauge transformations

Non-abelian gauge groups will act non-trivially on the vector fields and must therefore
involve a subgroup of the duality group. The electric gauge fields AHA associated with
this gauge group are provided by vector multiplets. Because the duality group acts on
both electric and magnetic charges, in view of the fact that it mixes field strengths with
dual field strengths as shown by (2.13), we will eventually introduce magnetic gauge fields



A as well, following the procedure explained in [. The 2n gauge fields AﬂM will then
comprise both type of fields, AﬂM = (AHA, Aun). The role played by the magnetic gauge
fields will be clarified later. For the moment one may associate A, with the dual field
strengths G, A, by writing G A = 29, 4,a-

The generators (as far as their embedding in the duality group is concerned) are de-
fined as follows. The generators of the subgroup that is gauged, are 2n-by-2n matrices
T, where we are assuming the presence of both electric and magnetic gauge fields, so
that the generators decompose according to Ty = (TA,TA). Obviously Tan® and TA NP
can be decomposed into the generators of the duality group and are thus of the form
specified in (R.13). Denoting the gauge group parameters by AM(z) = (AM(z), Ax(x)),
2n-dimensional Sp(2n;R) vectors Y™ and Zj; transform according to

5YM = —gAN TNPM YP7 (5ZM = gAN TNMP ZPa (227)

where g denotes a universal gauge coupling constant. Covariant derivatives thus take the
form,

DYM =9, YM 4+ gA, N TypMY"P
= 0, YM + gA AT pM YP + gANTA M YT (2.28)

and similarly for D, Z);. The gauge fields then transform according to
SAM = 9,AM + gTp™ AT A9 (2.29)

For clarity we first consider electric gaugings where the gauge transformations have a
block-triangular form and there are only electric gauge fields. Hence we ignore the fields
A,x and assume TANT = 0 and Th*" = 0. All the fields in the Lagrangian carry upper
indices, so that they will transform as in X" = —gA'Trs® X*. The transformation
rule for AHA given above is in accord with this expression, provided we assume that Tps®
is antisymmetric in I and . This has to be the case here as consistency requires that
the Trs® are structure constants of the non-abelian group. In the more general situation
discussed in later sections, this is not necessarily the case. The embedding into Sp(2n,R)
implies furthermore that Tyst = —TAS‘F, while the nonvanishing left-lower block Thsr is
symmetric in ¥ and T'.

Furthermore we note that (P.25) implies

1
FA(X)6XY = —gA"Trs® Fr(X) X* = —59 A Tysr XEXT (2.30)

Upon replacing A* with X we conclude that the fully symmetric part of Taxr vanishes.
This, and the closure of the gauge group, leads to the following three equations,

Tiasr) =0,
Tias™ Trja= = 0,
AT Tjz)a — Tas“Tars = 0. (2.31)



The variation of the Lagrangian (R.2() under gauge transformations now takes the form
1
L— L+ giguupa AA Tasr fuuzfpor ) (232)
where the tensors .7-1“,A denote the non-abelian field strengths,
Fu = 0,40 0,4,  + gTsr A, 5AT . (2.33)

This result implies that (2:33) no longer constitutes a total derivative in view of the space-
time dependent transformation parameters A™(z). Therefore its cancellation requires to
add a new type of term [g],

L= éig M7 Ty AN AL” <8pAoF + gg Tza" A,FAJA> : (2.34)

No other terms in the action will depend on Thxr. At this point we should remind the
reader that the gauging breaks supersymmetry, unless one adds the standard masslike and
potential terms to the Lagrangian (2.)), which involve the Tas'. We present them below
for completeness,

1 R _ = _ . . -
£y = ~50 NasTra"[7 00,7 X= + e Q0T X

Ly = g*> Nas Tr= XU XE Tag™ X2 X (2.35)
In later sections we will exhibit the generalization of these terms to the case where both

electric and magnetic charges are present.

2.2 Electric and magnetic charges

We now consider more general gauge groups without restricting ourselves to electric charges.
Therefore we include both electric gauge fields AHA and magnetic gauge fields A, 5. Only a
subset of these fields is usually involved in the gauging, but the additional magnetic gauge
fields could conceivably lead to new propagating degrees of freedom. We will discuss in
due course how this is avoided. In this subsection we consider the scalar and spinor fields.
The treatment of the vector fields is more involved and is explained in section [J.

The charges Ty’ correspond to a more general subgroup of the duality group. Hence
they must take values in the Lie algebra associated with Sp(2n,R), which implies,

Trrn® Qpig = 0. (2.36)

Combining the two equations (2.16) and (B.29) leads to the condition [[I],

Tun9Qpo XN XP = Tyas XAX> — 2Ty n "X A Fy — Ty " FAFe = 0. (2.37)
This result can also be written as

1
Frox™ = —SAM <TMAZXAXE + TMAEFAFZ> , (2.38)



which generalizes (2.30). Furthermore we impose the so-called representation constraint [[If],
which implies that we suppress a representation of the rigid symmetry group in Thyn',

T(AEF) _ 0,
QT(FA)E _ TEAF ,
Toun® Qpyg =0 = - " (2.39)
(AXT) )

2T(rp)™ = T*Ar .-

This constraint is a generalization of the first equation (R.31). Observe that the generators
Tas' are no longer antisymmetric in A and ¥, a feature that we will discuss in more detail
in section fJ.

The action of electric/magnetic duality on the fermions was already discussed earlier
when introducing the Sp(2n,R) covariant fermionic vector ;M (c.f. (B19)). In terms of

this field we can rewrite the Lagrangian (P.3) in a compact form,
_ 1 . _ .
Lonatter = =i XM 9 XN + Zisw [QZM PN — QM oV ] . (2.40)

In the expressions on the right-hand side it is straightforward to replace the ordinary
derivatives by the covariant ones defined in (2.2§), i.e.,

D, XM =9, XM + g AN Tnp™ X7
D“QZ’M = OHQZ‘M +g AﬂN TNPM QiP R (2.41)

and evaluate the gauge couplings. In particular we can then compare to the results of
subsection R.1], where we considered only electric gauge fields with charges restricted by
TA>"' = 0. To do this systematically we note the identity,

Tyuna XY — Exs Tun=XY =0. (2.42)

This equation can also be written as Fay 60X> = —gAMTyna XY, which is the infinites-
imal form of the first equation (R.24). Alternatively it can be derived from (R.37) upon
differentiation with respect to XA,
It is possible to cast (2.49) in a symplectically covariant form by introducing a vector
UM = (UM, FerUT), so that
QoTnp? XPUM =0, (2.43)

for any such vector UM. This form is convenient in calculations presented later.
From (R.49) one easily derives that D, X\ = D, F) = Fpy, DﬂXZ, which enables one
to derive
—iQun D XM DFXYN = —Npsy D, X" DFX>. (2.44)

This result shows that the generators Thspy are absent, in accord with what was found in
subsection P.1.

Next we consider the gauge field interactions with the fermions. It is convenient to
first derive an additional identity, which follows from taking a supersymmetry variation
of (2.49),

TunaY = Fas Tun =Y + Fasr Q% Tyn" XV (2.45)

,10,



This result can be obtained from the infinitesimal form of the third equation of (2.24).
Using this equation one verifies that D, Q;5 = Fax DHQZ‘Z + Fasr QirDﬂXZ, which leads
to

L i A i 1 i A i
ZIQMN |:Q M@QZN — QZMZDQ N] - _ZNAE <Q AlDQiZ + QZAZDQ Z)
1 = i Y
—Z1<FAginAlDXZQ I FrerQ AJDXEQZT) . (2.46)

Again the generator Thsax is absent in the expression above. The results of this subsection
explain how to introduce the electric and magnetic charges, but in no way ensure the gauge
invariance or the supersymmetry of the Lagrangian. To obtain such a result we first need
to explain some more general features of theories with both electric and magnetic gauge
fields in four space-time dimensions. This is the topic of the following section.

As a side remark we note that the Killing potential (or moment map) associated with

the isometries considered above, takes the form,
vir = Tun9Qpo XV X1 (2.47)

Indeed, making use again of (R.43), one straightforwardly derives Ozvpr = iNax 6X>.

Finally we return to the gauge transformations of the auxiliary fields YijA, which can
be derived by requiring that the Lagrangian (R.5) is gauge invariant. A straightforward
calculation lead to the following result,

1
oYy = _§AMTMNA(Zz‘jN +eamej M), (2.48)

where Zl-jM was defined in (R.29). Note that this result is in accord with the elec-
tric/magnetic dualities suggested for ZijM .

3. The gauge group and the embedding tensor

Here we follow [[l] and discuss the embedding of possible gauge groups into the rigid invari-
ance group Guigiq of the theory. In the context of this paper, the latter is often a product
group as the vector multiplets and the hypermultiplets are invariant under independent
symmetry groups. As explained in the previous section the non-abelian gauge transfor-
mations on the vector multiplets must be embedded into the electric/magnetic duality
group.

It is convenient to discuss group embeddings in terms of a so-called embedding ten-
sor ©,72 which specifies the decomposition of the gauge group generators Tj; into the

generators associated with the full rigid invariance group Gyigid,
Ty =Ont,. (3.1)

Not all the gauge fields have to be involved in the gauging, so generically the embedding
tensor projects out certain combinations of gauge fields; the rank of the tensor determines
the dimension of the gauge group, up to central extensions associated with abelian factors.

- 11 —



Decomposing the embedding tensor as ©,* = (0,2, 0%2), covariant derivatives take the
form,

D,=0,- gAHMTM =0y — gAHA@Aa ty — gAﬂA@Aa t, . (3.2)
The embedding tensor will be regarded as a spurionic object which can be assigned to a
(not necessarily irreducible) representation of the rigid invariance group Guigid-

It is known that a number of (Gyigiq-covariant) constraints must be imposed on the
embedding tensor. We already encountered the representation constraint (2.39), which is
linear in the embedding tensor. Two other constraints are quadratic in the embedding
tensor and read,

fabSOMP ON® + (ta) N O120p° = 0, (3.3)
QN @208 = 0 «—= etk =0, (3.4)

where the f,, are the structure constants associated with the group G. The first constraint
is required by the closure of the gauge group generators. Indeed, from (B.3) it follows that
the gauge algebra generators close according to

[Tar, Tn) = =Tun" Tp (3.5)

where the structure constants of the gauge group coincide with Thyny* = O/2 (ta)nT up
to terms that vanish upon contraction with the embedding tensor ©p?. We recall that
the Ty n" generate a subgroup of Sp(2n,R) in the (2n)-dimensional representation, so
that they are subject to the condition (R.3@). In electric/magnetic components the latter
condition corresponds to Taya> = —Tar>a, Taras, = Tasa and Ty A% = Ty A,

Note that (B.J) implies that the embedding tensor is gauge invariant, while the sec-
ond quadratic constraint (B.4) implies that the charges are mutually local, so that an
electric/magnetic duality exists that converts all the charges to electric ones. These two
quadratic constraints are not completely independent, as can be seen from symmetrizing
the constraint (B.J) in (M N) and making use of the linear conditions (R.39) and (2.34).
This leads to

QMN 920N (t,)p? = 0. (3.6)

This shows that, for non-vanishing (tp)p¥, the second quadratic constraint (B.4) is in
fact a consequence of the other constraints. The constraint (8.4) is only an independent
constraint when a and b do not refer to generators that act on the vector multiplets. This
issue is relevant here as Gyigiq may contain independent generators that act exclusively in
the matter (i.e., hypermultiplet) sector.

A further consequence of (£.39) is the equation

Touny” =2 daniw (3.7)
with

dayn = (ta)u’ Qnp,

1 ZAa — l@Aa
zMa = _OMNg 2 — 2> 3.8
2 N Zp\? = —%@Aa, (38)
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so that d,pn defines a Gyigig-invariant tensor symmetric in (MN). The gauge invariant
tensor ZM-2 will serve as a projector on the tensor fields to be introduced below [L]. We

note that the constraint (B.4) can now be written as,
zMag,P =0. (3.9)

Let us return to the closure relation (B.5). Although the left-hand side is antisymmetric
in M and N, this does not imply that Th;n' is antisymmetric as well, but only that its
symmetric part vanishes upon contraction with the embedding tensor. Indeed, this is
reflected by (B.7) and (B.9). Consequently, the Jacobi identity holds only modulo terms
that vanish upon contraction with the embedding tensor, as is shown explicitly by

Tiuny” Tigr)™ + Tigan” Tive)™ + Tivg)” Tiup)™ = =22 dapio Tun)” - (3.10)

To compensate for this lack of closure and, at the same time, to avoid unwanted degrees
of freedom, we introduce an extra gauge invariance for the gauge fields, in addition to the
usual nonabelian gauge transformations,

5AM =D AM —gZzM2Z, (3.11)

where the AM are the gauge transformation parameters and the covariant derivative reads,
DMAM = 8MAM + ngQM AMP A®. The transformations proportional to =, a enable one to
gauge away those vector fields that are in the sector of the gauge generators Thn? where
the Jacobi identity is not satisfied (this sector is perpendicular to the embedding tensor by
virtue of (B.9)). Note that the covariant derivative is invariant under the transformations
parametrized by 2, 5, because of the contraction of the gauge fields AHM with the generators
Ty The gauge symmetries parametrized by the functions A (z) and Z,,,(x) form a group,

as follows from the commutation relations,

)
[5(/\)7 5(E)] = 5(é) ) (3.12)
where

AM = gT[NP]MAéVAf,
E3ua = danp(A DAY — AY DAY,
S = gA (Tpa® + 2dapn ZVP)2 0 - (3.13)

The field strengths follow from the Ricci identity, [D,, D,] = — gfwM Ty, and depend
only on the antisymmetric part of Thyn?,

Fu =0, AM —0,AM + gTinp™ ANASE (3.14)
Because of the lack of closure expressed by (B.10), they do not satisfy the Palatini identity,

0F ™ =2 DA, M = 29 Tipgy™ A" 04,9, (3.15)
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under arbitrary variations 5AﬂM . Note that the last term cancels upon multiplication
with the generators Th;. The result (B.14) shows that ]:WM transforms under gauge
transformations as

(5.7:“,,M =g APTNPM fﬂyN —2g ZM’a(D[MEV}a + dapQ A[MP 5AV]Q) , (3.16)

and is therefore not covariant. The standard strategy is therefore to define modified field
strengths,
HMVM — fMVM + gZMva B;,Ll/a R (317)

by introducing new tensor fields B, , with suitably chosen gauge transformation rules, so
that covariant results can be obtained.

At this point we remind the reader that the invariance transformations in the rigid case
implied that the field strengths G, transform under a subgroup of Sp(2n, R) (c.f. (2.13)).
Our aim is to find a similar symplectric vector of field strengths so that these transfor-
mations are generated in the non-abelian case as well. This is not possible based on the
variations of the vector fields AMM , which will never generate the type of fermionic terms
contained in G, n. However, the presence of the tensor fields enables us to achieve our
objectives, at least in part. Just as in the abelian case, we define an Sp(2n,R) vector of
field strengths QWM by

G = Hu N,
_ _ 1 _ .
guuA = Fas H;uxz - gfjl\ZlI1 Qiz'ﬁu/QjF e’ (318)
Note that the expression for G, is the analogue of ), with F; WA replaced by HWA.

Following [[] we introduce the following transformation rule for By, (contracted with
ZM23 hecause only these combinations will appear in the Lagrangian),

zM:a 5B;wa =2 ZM’a(D[“El,}a + d; NPA[“N(SAV}P) —2 T(NP)MAPQWN R (3.19)

where D,Z,, = 0,52 — gAﬂMTMabEyb with Tha® = —Oufe® the gauge group gen-
erator in the adjoint representation of Gyigiq. With this variation the modified field
strengths (B.17) are invariant under tensor gauge transformations. Under the vector gauge
transformations we derive the following result,

G, = —gA"Tpn G, N — g APT" p* (G, — Hy )t
6Gn = —9A ' Tpna G, N — g Fas APT 5™ (G, — Mt s

7%
(G = Ha = g A (T pa = TV p” Fn) (G — Hp )1 (3.20)
Hence 5QWM =—g AP TpyM Q{X/, just as the variation of the abelian field strengths GWM

in the absence of charges, up to terms proportional to ©4- (G —Hyuw)a- According to [,
the latter terms represent a set of field equations. In that case the last equation of (B.2()
expresses the well-known fact that, under a symmetry, field equations transform into field
equations. As a result the gauge algebra on these tensors closes according to (B.13), up to
the same field equations.

- 14 —



In order that the Lagrangian (R.3)) becomes invariant under the vector and tensor gauge

transformations, we have to make a number of changes. First of all, we replace the abelian
field strengths F,,* in (R2) by H, ™, so that

. oc tor
g vA = 1&u . . 3.21
12 nvpo 87’(,;0 A ( )
Under general variations of the vector and tensor fields we then obtain the result,
1
8 Lvector = —IGTH [DMMVA + 190" (6Byua - 2dapQAMP5AVQ)] the.  (3.22)

The reader can check that the Lagrangian (R.d) is indeed invariant under the tensor gauge
transformations. Even when we include the transformations of the scalar and spinor fields,
the Lagrangian is, however, not yet invariant under the vector gauge transformations. For
that it is necessary to introduce the following universal terms to the Lagrangian [[l],

Lo 1
Liop = 59" O By, (2 OpAon+ 9w a A AN — 290, Bm)
1 1
+ <ig T a A, AN (0,450 + 29Tro A, 4,9)
1 ., 1
+ cig e Ty AMAN (8,405 + ZngQAApPAUQ) . (3.23)

The first term represents a topological coupling of the antisymmetric tensor fields with the
magnetic gauge fields, and the last two terms are a generalization of the Chern-Simons-like
terms (R.34) that we encountered in subsection R.I. Under variations of the vector and
tensor fields, this Lagrangian varies into (up to total derivative terms)

1
0Lyop = THTHA DS A A + 119 HH \ O8(6B s — 2dapg A 0A,9) +he.. (3.24)

Under the tensor gauge transformations this variation becomes equal to
(ig HTMM @, D,=,a + h.c.). This expression equals a total derivative by virtue
of (B.9) and the Bianchi identity,

Dy MM = %9 ZM2 Hypa (3.25)

where
Huwpa =3 DBy o + 6danp AN (0,4,7 + %gT[RS}PAVRAp}S ). (3.26)
In the above equations, covariant derivatives are defined by DMHW)M = 3MHVpM +

gAMPTpNMHVpN and D,B,,a = 0,Buva —gApMTMabBWb. Observe that these derivatives
are not fully covariant in view of (B:20) and (B.19). Fully covariantized expressions were
presented in [J] but are not needed below. The gauge invariance of the total Lagrangian
Lyector + Liop, Will follow upon including the gauge transformations of the matter fields [EI]

As we stressed before, the combined gauge invariance of the vector and tensor gauge
fields ensures that the number of physical degrees of freedom will not change by the intro-
duction of the magnetic vector gauge fields and the tensor gauge fields [[[]. The combined
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gauge algebra is consistent for the tensor fields upon projection with the embedding tensor,
and as it turns out the action depends only on those field components. If this were not the
case, one would need to introduce new tensor fields of higher rank [I§, [[§]. Indeed, under
variation of the tensor fields one finds

1
5£V6Ct0r + 5£top = _gig gwjpg (g - H)MVA (_)Aa 5Bpaa 9 (327)

which shows that the components of the tensor fields that are projected to zero by multipli-
cation with ©*? are not present in the action. Hence those components can be associated
with an additional gauge invariance. A similar situation arises with the magnetic gauge
fields A,x. Under variations of the gauge fields AMM one derives,

1
6 Lvector + 0 Ltop = iiaww D,Gpo™ Quind AN, (3.28)

up to a total derivative and up to terms that vanish as a result of the field equation for
Byya. Substituting (B.25) we rewrite (B.2§) as follows,

1., 1
5£V6Ct0r + 5['top = 515M e _Dung'A 5AMA + Eg Hupaa @Aa(SAuA . (329)

Because the minimal coupling of the gauge fields is always proportional to the embedding
tensor, the full Lagrangian does not change under variations of the magnetic gauge fields
that are projected to zero by the embedding tensor component ©42, up to terms that are
generated by the variations of the tensor fields through the ‘universal’ variation, 0B, =
2dapqA, A

Finally, we have been able to identify yet another independent gauge invariance which
acts only on the tensor fields,

O™ B,s o AN (G — H) s — 6 AP (G —H) s (3.30)

where AMZH , — @A 2k,

All these gauge symmetries have a role to play in balancing the degrees of freedom.
In [fl] a precise accounting of all gauge symmetries was bypassed in the analysis. We note
that not all of them have a bearing on the dynamical modes of the theory as they also act
on fields that play an auxiliary role.

4. Restoring supersymmetry for non-abelian vector multiplets

In this section we show how the supersymmetry can be restored in the presence of a gauging.
In this way we will find the generalizations of the massllike and potential terms of order g
and g2, respectively, which were already exhibited in (B-39) for the case of purely electric
charges. In addition we determine the corresponding changes in the transformation rules.
The supersymmetry transformations that leave the action corresponding to (R.1) invariant,
were given in (R.§).

Introducing electric and magnetic charges, with a uniform gauge coupling constant
g as before, requires a number of universal changes of the Lagrangian that were already

,16,



discussed in the previous section. In Lyatter We have to covariantize the derivatives as
already discussed in subsection P.4. It is convenient to use the representation (R.40). With
the covariantizations included we thus have

_ 1 . _ .
Lunatter = —ian D XM DXN + 2y [QZMﬂﬁiN - QZ-M;DQZN} L @)

In Lyector we must replace the abelian field strengths FWA by the modified field strengths
H,, ™, defined in (B:17). Therefore we replace (R-3) by

1 . B -~ 1 . _ o ..
Evector = ZIFAEHMVAH B 1_61FAEFQ§\ TW/HMVE Q; eV

—%iNAQ (FAAgﬁiA’yw/szeij> (FFEQQkF’y“VQlEekl> + h.c.. (4.2)
Furthermore one includes the Lagrangians (2-4), (2.5) and (B-23), which remain unaltered.
Up to an extension of (R.35), whose form we will establish in this section, we do not expect
further modifications.

Also the supersymmetry transformation rules acquire a number of modifications, ex-
tending space-time derivatives and field strengths to covariant ones. Furthermore one has
to take account of the presence of the new magnetic gauge fields and the tensor fields.
However, one also needs a few additional terms in the transformation rules, whose form
will be established in due course. For the moment we use the following modified transfor-
mation rules, where we also include the variations of the magnetic gauge fields, which we
denote by do,

So XM = e,

50AMA = aijéfyquA + aijéi'yMQjA,

SoAun = Fas €967, + Fax ;56 7,07%

Sout = 2 X e + %’YW'H;VA&“UJ + Ve

SoYi = 26,0 + 2ee EF QYA (4.3)

At this point it is convenient to note that the supersymmetry variations of the scalar,

spinor and vector fields can be written in the form,

(S(]XM = giQZ’M,
50AMM = e’-:ijgi’)/MQjM + e’:‘ijgi"mQjM,
1 , ,
(5()QiM = QZDXMGZ' + 57‘“’9;1,]‘/15”»6] + ZijMEJ R (4.4)

where the fermions Q;M, the field strengths QWM , and the quantities ZijM were defined
in (£.19), (B.1§) and (P.29), respectively.

Most of the cancellations required for demonstrating the supersymmetry of the La-

grangian will still take place when derivatives are replaced by covariant derivatives. A
clear exception arises when dealing with the commutator of two derivatives, because they
will lead to field strengths upon using the Ricci identity. This situation arises for the
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variations of the fermion kinetic term. Furthermore, when establishing supersymmetry
for the more conventional Lagrangians, one makes use of the Bianchi identity for the field
strengths, which no longer applies to the new field strenghts. Of course, the presence of
gauge fields in the covariant derivatives induces new variations. To investigate these issues,
we first determine the supersymmetry variation of £atter under the transformations given
above (up to total derivatives),

_ _ 1-.
80 Lomatter = 19 QroTrn® |DFXM XN — XM p, XN + iglMymiN 6A,F
1, SM A v iay—
—5ig QMQTPNQ [XM QN yHv el HWP — h.c.]
+HQuN [QiM’)/VEj E€ij DMQ_MVN — hC] R (45)

where we suppressed variations that involve neither the gauge coupling constant g nor the
(modified) field strengths. These variations will cancel as before.

It is now easy to verify that the term of order ¢° can be combined with the result from
the variation of Lyector + Ltop (c.f. (B:29) and (B.29)),

80 (Lyector + Liop) = —iQun G M D,6AN +hee.+ -+ (4.6)

Upon using the expressions for G,, A and 6A,,, the combined result thus leads to a total
derivative plus terms proportional to D, Fs. and terms cubic in the fermions. These terms
cancel for the abelian theory with an ordinary derivative and the cancellation proceeds
identically when ordinary derivatives are replaced by covariant ones. Note that nowhere
one needs to use the Bianchi identity. This calculation confirms the correctness of the
transformation rule for the magnetic gauge fields. Hence we can now concentrate on the
remaining terms of (.), which are the only variations left, up to terms induced by the
variation of the tensor fields which we will need in due course.

To cancel the order-g terms in () we need to add new terms in the transformation
rules of ;4 and Y;jA. Furthermore new terms to the Lagrangian are required. For the
case of purely electric charges these terms are known and the obvious strategy is to simply
generalize these terms. This leads to the expressions,

6gQZ-A = —QQTMNAXMXNsij ej,
0¥ = —Ag Tan™ QM ek e XV — QM5 XV
£y = —5ig QuigTon® 7010, XY — 2y OMQIPXN] (4.7)
In the case of purely electric charges the expression for £, reduces to the first expression
of (R.34) upon using (R.42).

Collecting the new variations proportional to the field strengths that arise as a result

of (7), we find, using (B.18), (R.43) and (R.39),

1 o o
5g£vector + 50£g = 519 QMQTPNQ XM QZ‘N’yﬂyel QWP + h.c.. (48)
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This term is almost identical to the second term of (fL.5) except that is proportional to
gWM rather than to HWM . However, the combination of these two terms is cancelled by
assigning the following variation to the tensor fields,

(5Bwja = —QtaMPQPN (A[MM (SAV}N - XMQiN’yMVEi - XMQiN’yuyei) . (49)

At this point one can verify that all other supersymmetry variations linear in the
gauge coupling constant g vanish. Here one makes use of the various results derived in
subsection R.3, and in particular of (R.43). What remains are the order-g? interactions
induced by the order-g transformations of the spinors, which can be written as,

5QQZ'M = —2g TNPM XNXP Eij ej . (410)

The order-g? variation follows from 04L4, and can be written proportional to the super-
symmetry variation 6 XM given in ([i4),

5g»cg — —2192 QMQTNPQ XP(SX[M TRSN] XRXS + h.c.. (411)

Using the Lie algebra relation (B.), as well as the relation (2.43), we can write this in a
form that can be integrated. This reveals that these variations can be cancelled by the
variation of a scalar potential, corresponding to

Ly =ig> Qun Tpg™ X X9 TreV X7 XS . (4.12)

This expression reduces to (R.35) for purely electric gaugings upon using (R.43). Observe
that the charges Thxr do not contribute to (4.12), as is well known from previous construc-
tions.

Before closing this section we determine the supersymmetry algebra by evaluating the
supersymmetry commutator on XM and AMM (bearing in mind that the magnetic gauge
fields A,p can be contracted with ©"2 without loss of generality). The result for the
commuatator takes the following form,

[0(e1), 0(e2)] = 2(Ea" 7 e1; + E2i7"e1") Dy + (M) + 6(2) , (4.13)

where the first term corresponds to a covariant translation (covariant with respect to vector
and tensor gauge transformations), and the second and third terms denote additional vector
and tensor gauge transformations with parameters,

AM — 4 (XM €'er? €ij + xM €2€1; 6”) ,

‘Eﬂa = -2 daNp(AMNAVP + 2 nMUXNXP)(EQi’yVEM + Egi’yyeli) . (414)

Here we made use of (2:37) to close the commutator on X™. For closing the commutator
on AMM we used the field equations for YijM (implying that ZijM is pseudo-real), and the
field equation for B,,;.

This concludes the derivation of supersymmetric vector multiplet Lagrangians with
electric and magnetic gauge charges. In the following section we will consider the coupling
to matter by introducing hypermultiplets. This will lead to additional contributions to the
scalar potential.
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5. Hypermultiplets

In this section we give a brief description of hypermultiplets and their gaugings, following
the framework of [17, [[§]. The ny hypermultiplets are described by 4ny real scalars &4,
2ny positive-chirality spinors (% and 2ny negative-chirality spinors (®. Hence target-space
indices A, B, ... take values 1,2,...,4ny, and the indices a, 3, ... and &, 3, ... run from 1
to 2ny;. The chiral and antichiral spinors are related by complex conjugation (so that we
have 2ny Majorana spinors) under which indices are converted according to a < a.

The supersymmetry transformations take the form,

dod™ = 2(via €7 + 30" @),

do¢* = V&, Pole’ — 30" T ¢,

00C% = V3T Joe; — 861 T 4% 7, (5.1)
where ¢y indicates that the variations refer to zero gauge coupling constant g. Here I'y%g
and I'4“5 are the connections associated with field-dependent reparametrizations of the
fermions of the form (% — S%(¢) ¢?, and ¢* — 5%() (8. Naturally these reparametriza-
tions act on all quantities carrying indices o and @. The curvatures R4p®g and Rsp® 3
associated with these connections take their values in sp(ny) = usp(2ny; C). The quantities
74 and V4 are (4ny) X (4ny) complex matrices which play the role of the quaternionic (in-

verse) vielbeine of the target space. They satisfy a pseudo-reality condition specified below.
The Lagrangian takes the following form

1 — - - 1 _ -
Loy = —594B 00" P — Gap(CODCP + (P p¢) — 7"V ans COyuCP Ty (5.2)
with covariant derivatives
DuC® = 0,0 + 06" T P, DuC™ = 9,05 + 0,6 T3¢ (5.3)

The tensor W55 is related to the Riemann curvature Rapcp associated with the target
space metric gap, as well as to the sp(ny) curvatures mentioned above. Observe that the
Lagrangian is invariant under the U(1) R-symmetry group which acts by chiral transforma-
tions on the fermion fields. The SU(2) R-symmetry can only be realized when the target
space has an SU(2) isometry.

The target-space metric gap, the tensors v, V4 and the fermionic hermitean met-
ric Gap (i.e., satisfying (Gap)* = Gp,) are all covariantly constant with respect to the
Christoffel connection and the connections I' 1%3 and I" Ao‘g. Furthermore we note the fol-
lowing relations,

Yo VB = 1Bia VA~ = =%, Vi + 0! gaB,

Vit yy = 650%,
gVPVEVE = 9P gapviE v =i Qs
ei Qs VI = gaprE = Gag V5,
YAia Véa = EikJ%g + %QAB &,
Jap"E, = —51? e yaa- (54)
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Here Q% and Q55 are skew-symmetric covariantly constant tensors (satisfying Q@BQ/% =
—057), and the JiljB are three complex structures generating the algebra of quaternions.
The existence of the complex structures implies that the target space is hyperkéhler.

The equivalence transformations of the fermions and the target-space diffeomorphisms
do not constitute invariances of the theory, unless they leave the metric gap and the
Sp(nu) x Sp(1) one-form V,* (and thus the related geometric quantities) invariant. There-
fore invariances are related to isometries of the hyperkahler space. A subset of them can
be elevated to a group of local (i.e. space-time-dependent) transformations, which require
a coupling to corresponding vector multiplets. Such gauged isometries have been studied
in the literature [[9—PR4] but only for electric charges.

Infinitesimal isometries are characterized by Killing vectors and the ones associated
to local transformations will be labeled by the same index M that labels the electric and
magnetic gauge fields of the previous sections. In principle, the gauged isometries constitute
a subgroup of the full group of isometries, defined by the embedding tensor. Hence the
corresponding Killing vectors are proportional to the embedding matrix, k%4, = O,/ k45,
and (B.9) implies,

ZMapA =0, (5.5)

Without gauge interactions, the hypermultiplets do not couple to the vector multiplets, so
that the full group of invariances factorizes into separate invariance groups of the vector
multiplet Lagrangian and of the hypermultiplet Lagrangian. The index a refers to all these
symmetries, and therefore k£, will vanish whenever the index a refers to a generator acting
exclusively on the vector multiplets.

The local gauge group is thus generated by the Killing vectors k4 Mm(p) =
(k47 (9), k41 (¢)), with parameters AM. Under infinitesimal transformations we have

0 = g Ak (9). (5.6)
where g is the coupling constant and the k4 y;(¢) satisfy the Killing equation,
Dakpn + Dpkayv = 0. (5.7)
Higher derivatives of Killing vectors are not independent, as is shown by
DaDpkey = Rpoap k" - (5.8)
The isometries close under commutation,
kP vopk ny — kB Nkt = Tunt K p, (5.9)

where, as before, the antisymmetry in [M N] on the right-hand side is ensured by (5.5).
The invariances associated with the target space isometries act on the fermions by field
dependent matrices, which satify the relation

(tM)aﬁ ij = DAkBM ng‘ ) (5.10)
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leading to
1 .
(tar)% = SVa; 75" Dk’ . (5.11)

The result (b.10) was derived by requiring that the tensor V§; is invariant under the isome-
tries, up to a rotation on the indices c. The invariance implies that target-space scalars
satisfy algebraic identities such as

tva Gyg + 1t Gay = tM;/[@ QB]W =0, (5.12)

which establishes that the matrices t)/%g take values in sp(ng). From (B.9) and (b.§), one
may derive
DAtMaﬁ = RABaﬁ kBM, (5.13)

for any infinitesimal isometry. From the group property of the isometries it follows that
the matrices tys satisfy the commutation relations,

[tar, tn )% = —Tun? (tp)% + k' kBN Rag®s, (5.14)

which takes values in sp(ny). This result is consistent with the Jacobi identity.
The previous results imply that the complex structures J3, are invariant under the

isometries,
KOv e T g = 2004k v T = 0, (5.15)

implying that the isometries are tri-holomorphic. From (p.15) one shows that
oa(Jjc k€ ) — oB(J3c k€yr) = 0, so that, locally, one can associate three Killing po-
tentials (or moment maps) p¥/ s to every Killing vector, according to

Oapar = T kB ar, (5.16)

which determines 4% ; up to a constant. These constants correspond to Fayet-Iliopoulos
terms. Up to such constants one derives the equivariance condition,

JZB kAM /{?BN = TMNP ,u,ijp7 (5.17)
which implies that the Killing potentials transform covariantly under the isometries,
S ng = AN EAN 4 = AN Tp” 1 p (5.18)

Subsequently we consider the consequences of realizing the isometry (sub)group gen-
erated by the k4, as a local gauge group. The latter acts on the hypermultiplet fields in

the following way,
6p =g AM kA, 0C™ = gAMip 5 ¢ — 50T 4% (P, (5.19)

where the parameters AM are functions of z#. The relevant covariant derivatives are equal
to,

Do = 0,0" — gAM kA, D,uCY = 0,C% + 0,0 T 4% ¢° — gA Mty ¢ . (5.20)

— 22 —



These covariant derivatives must be substituted into the transformation rules (5.1]) and the
Lagrangian (p.2). The covariance of D,(?,

6D = g AM 13 D,uCP — 6 T 425 D,uCP . (5.21)

follows from (f.13) and (F.14).

Just as for the vector multiplets, the introduction of the gauge covariant derivatives to

the Lagrangian breaks the supersymmetry of the Lagrangian. To restore supersymmetry
we follow the same procedure as in section [|. But in this case the situation is somewhat
simpler because the electric and magnetic gauge fields couple to standard hypermultiplet
isometries. This means that the initial results will coincide with those obtained for electric
gaugings.

Let us first present the variations of the Lagrangian (5.9) with the proper gauge co-
variantizations and determine the supersymmetry variation linear in the gauge coupling
constant ¢ and linear in the fermion fields,

0Ly =gkanm ’y% an“”eifl:VM + & QiMﬂqﬁAej + h.c.} . (5.22)

The first term originates from the fact that the commutator of two covariant derivatives
acquires an extra field strength in the presence of the gauging, whereas the second term
originates from the variation of the gauge fields in the covariant derivatives of the scalars.
The first term can be cancelled by a supersymmetry variation of the following new term,

[,gl) = 2g kans [’7&4@'52‘]‘ aanM + ’y{g{e’fij ganM] . (5.23)

The variations of this term proportional to the field strength QWM cancel against the term
proportional to H,,,™ (the field strength F,,,™ can be replaced by H,,,* by virtue of (5.9))
by adding a new term to the variation ([.9) of the tensor fields Byya,

d0Bya = _4ik3Aa [’YAi@ C_a'hwei - '7,1'404 Ea’)/,uuei] . (5.24)

Another term in the variation of () is proportional to X™ and its complex con-
jugate. Their cancellation requires the following extra variations of the hypermultiplet
spinors,

0C =29 XM kAN VS e, 6¢Y =29 XM kA Vg6 (5.25)

and an extra term in the Lagrangian equal to
[,gQ) = 2g [XMZ?MPYO( Qgpy EQC’G —i—XMtM:Y@ QB;Y E@CE} . (5.26)
The remaining variations then take the following form.

5Lo + 0L +0LP) = =29 0ap v QM Pote; — 29 Dapijnr QM Pyrel
—2g [0apijn Y™ + 0api™ Fax Y= 528 g,.C”
— 2 [0apijn YN + Oapy™ Fas Y] v ¢, (5.27)

where we restricted ourselves to variations linear in the fermion fields and linear in g.
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To cancel these variations we must include the following new term to the Lagrangian,

3 1 _ 1 o _ e
LY = gyt piga+ 5 (Fas + Fis) Mijz} 19 [Fasr w72 Q50" + Fasr pi Q207

(5.28)
as well as assign new variations of the fields Q;* and Yzé\ of the vector multiplet,
g™ = 2ig piste
55Vi™ = 4ig k™ |erivj)an ¢ + ena €C* 04| - (5.29)

This completes the discussion of all the variations linear in g and in the fermion fields. The
result remains valid for the cubic fermion variations as well. However, new variations arise
in second order in g, by the order-g variations in the order-g terms in the Lagrangian. Here
we have to consider the combined results for the vector multiplets and the hypermultiplets.
All these variations cancel against the variation of a scalar potential, corresponding to

1 g
Ly =20k kP gap XM XN — 592 Nas pig™ > . (5.30)

6. Off-shell structure

In the absence of magnetic charges, the vector multiplets constitute off-shell representations
of the N = 2 supersymmetry algebra and the tensor fields decouple from the theory.
However, on the hypermultiplets the supersymmetry algebra is only realized up to fermionic
field equations. The situation changes crucially when magnetic charges are present. In
that case there are no longer any off-shell multiplets and the supersymmetry algebra is
only realized when the fields satisfy the field equations of the hypermultiplet spinors and
of the fields A, YZ-]'A and B,,,. In this section we discuss how the off-shell closure can
be regained for the vector multiplets when magnetic charges are switched on. In this
discussion the hypermultiplet fields play only an ancillary role.

We start by introducing 2n independent vector multiplets, associated with the electric
and magnetic gauge fields, AﬂA and A\, and collectively denoted by AHM . In the absence
of charges, these fields are subject to the standard off-shell transformation rules,

XM =M,
sAM

Eijéi’yMQjM + Ez‘jéi’yMQjM ,
1 B . .
oM = 20X Me; + 57“”F“,,M€ijej +Yv,Me,
5YVZ‘J-M = QE(i@Qj)M + 2e5€51 E(k@Ql)M . (6.1)
We stress once more that, unlike previously, these 2n vector multiplets are independent.
In due course we shall see how to make contact with the previous description.
The tensor gauge fields B,,,, are assigned to off-shell tensor multiplets. Just as before,

the index a labels the independent continuous symmetries of the theory. These multi-
plets consist of scalar fields L, positive chirality spinors (', (and their negative chirality
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conjugates ;a), tensor gauge fields By, and complex scalars G,. However, for reasons
explained below, we complexify the scalars L¥/, by introducing complez scalars P¥,. These
fields transform as vectors under the SU(2) R-symmetry, and their pseudo-real parts are
proportional to the fields L%,

LY, =P, %Py, (6.2)
The consistency of this extension is ensured by introducing, at the same time, the local
gauge transformations, P, (z) — PY,(z) + ¥ ,(z), where the gauge parameters £¥, are
pseudo-real, so that &2 = g §kla. In terms of the gauge invariant scalars LY, we will

obtain the more conventional formulation of the tensor multiplet.? The supersymmetry
variations of the tensor multiplets are now as follows,

5Pja = 2emej R,

1. A 1. y
5B;wa = 5161'7;1%)0]3 €ij — §1€i')/uu§0ja e,
690ia = a(Pija + 5ik5jlpkla) € + 25ina€j - Gaei )
6Gy = =290, (6.3)
where H¥, = %ig“” P70, B,ga. Note that the tensor multiplet fields are thus subject to two
local gauge invariances,

Byva(z) — Buva(z) +20,Z,(7), Pija(x) — Pyja(z) + i&ja(z) . (6.4)

Both these transformations appear in the supersymmetry commutation relation, which
takes the form,

[0(e1), 0(€2)] = 2(E"y e1i + &2y e1") Dy + 6(Z) + 6(€), (6.5)

where the first term denotes the translation (covariantized with AHM and B, depen-
dent terms) and the second and third one correspond to the transformations (f.4) with
parameters,

Epa = —i (&6 + Evu61") (Pirac™ + e PM,)
Eija = 4 (B2 ue1( + B muar”) ejy HMa + 21 (@57 ey + @ a™) 0uP)ra
— 2 (€Q(k7u€1m + Egm'y“el(k) EikEjl 8MPl)ma . (6.6)
Now we return to the vector multiplets with a deformation parametrized by the em-
bedding tensor that couples the vector multiplets to a tensor multiplet background. The

deformation is induced by changing the field strength tensors and the auxiliary fields in
the supersymmetry transformation for 2; by

E,M — H,M=F,M+9ZM2B,,.,

Vit — Y = viM —igZM2 Py (6.7)

2We use the notation of [@]7 with the exception of the tensor field which is rescaled by a factor 2. Note
that the precise conventions are crucial for making contact with the tensor coupling to the vector multiplets,
as employed in this paper (in particular, note @))
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Observe that yl-jM is no longer pseudo-real. Since we insist on the fact that HWM and
yijM remain gauge invariant with respect to (p.4) we assume the following transformation
rules for AHM and YijM,

oAM= —gzMaz oYM = —gzMa¢,;, . (6.8)

Subsequently we evaluate the supersymmetry commutator on the vector multiplet fields
acting on XM, AMM and Y;jM . For the moment, we assume non-trivial gaugings, gener-
ated by the same matrices Tyun?t as before. We thus include order-g corrections to the
supersymmetry variations of €; and YZ-]'M . However, the closure of the supersymmetry
commutator is non-trivial in view of the deformation (f.7) and the fact that the Thsn* do
not satisfy the Jacobi identity. This will lead to new contributions to the supersymmetry
commutator proportional to the tensor ZM2. The result of an explicit calculation shows
that these contributions can all be absorbed in the transformations parametrized by =,
and gija7 A

[6(e1), 6(e2)] = 2(&2"v"e1; + €2y e1’) Dy + (M) + 6(2) +8(6) (6.9)

where the first term corresponds to a covariant translation (covariant with respect to vector

and tensor gauge transformations). The corresponding parameters are equal to

AM =4 (XM &lerd e + XM Egie1,€7)
Epa=—2danp(AN ALY 4+ 20, XV XT) (60 e1i + @277 er?)
—1 (EQi'YuElj + €2j7u61i)(Pikaekj + 5ikija) )
&ija=4danp[ XV Bu XP — N9, 0 e i (@F ey ) + &y a”)
— ddanp e Epey (2XVYT — QN QT)
— 4danpep €76t (2 XNyuP _ eimsanmNQ"P)
+4i (&2 yue1 + Eavuer”) ey H"
+2i (€2k7“€1(i + EQ(i’Y“le) D, Pj)ra
— 21 (&% ey, + Eamya®) epejy DL P, (6.10)

where use was made of the Bianchi identity (B.25). The important observation is that all
the terms referring to the tensor multiplet fields in (p.1(]) are in precise agreement (up to
the covariantizations) with (B.6). The remaining terms in AM and Z,, have already been
found before in ([.14), while those in &;;, are new.

What remains is to verify the closure on the fermion fields ;. In order to do so,
we must first extend the tensor multiplets by incorporating non-abelian gauge couplings
in (B.J). However, to keep matters simple, we will suppress non-abelian gauge interactions
here and henceforth. In that case (f-J) is complete and the closure can be verified directly.
As expected, the only possible terms that could affect the closure are the terms generated
by the deformation (B.7). It is then a relatively straightforward calculation to verify that
these terms cancel, so that we have indeed established the existence of an off-shell repre-
sentation with both electric and magnetic charges present. Of course, these charges are
then exclusively carried by hypermultiplets in the way that we have described before.
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Let us now turn to the Lagrangian to see how the on-shell results of this paper can
be obtained. The construction starts from the observation that, in the absence of the
deformations (f.7), there exists a supersymmetric coupling between tensor and vector su-
permultiplets. For instance, such a coupling between the magnetic vector supermultiplets
coupling and the tensor multiplets is described by the following Lagrangian,

_ 1 g g
L x @Aa{GaXA + GaXa = 5(PyaY Ia + PUyYi5)
_ _ . 1
+ Q' papia + Qinp'a — 5ia*“’f)"BWan(,A} . (6.11)

In this Lagrangian the tensor multiplet fields act as Lagrange multipliers which would
put the magnetic vector multiplet fields to zero. Instead, the on-shell theory that we
are attempting to construct should lead to certain relations between the magnetic vector
multiplet fields in terms of the other fields. Moreover, the Lagrangian (p.11]) does not apply
in the presence of the deformations. This suggests to make a number of modifications
induced by the following shifts,

Xp — XA —FA(X),
Qix — Qa — Fas(X) %,

1
F,ul/A — F,ul/A - Zg@AaB;wa )
1,
Yija — Yija + 219 O7°Fja, (6.12)

where F(X) is the usual holomorphic function of the scalars X* belonging to the electric
vector multiplets. Note that the substitutions for F),,4 and Yj;a coincide with the expres-
sions for H,,n and YV;;jx up to a factor of % This is related to the fact that the fields B,
and Pj;, will appear quadratically in the Lagrangian upon performing the shifts 6.12). we
note that the substitution for Y;;5 is ambiguous in view of its pseudo-reality, while Y;;,
and Y, are assumed to acquire different shifts. Ultimately, the justification of these sub-
stitutions is, of course, given by the supersymmetry invariance of the resulting Lagrangian.
Hence without further ado we now present the following extension of (f.11),

1 _ _
L = —9 @Aa{Ga[XA — FA(X)] + Ga[Xp — FA(X)]
_dgip Ay s ticeepo | Z o oo pii lyk, Lo, bph
26 e FPija | Yiin + 11990 Fhib 251k6jl a A~ 1994 b
+ Pia [QiA - FAzﬁiE} + & {Qm - FAzﬁzZ]
1., 1
— 5l "7 Bva |:FpUA — Zg@AbB’”b} } , (6.13)

which is invariant under the transformations (p.4)), (6.§). This Lagrangian is the off-shell
extension (in the abelian case) of (B.23)), in view of the fact that the last term that con-
tains the tensor gauge fields is identical. Clearly, the fields G, and ¢?, act as Lagrange
multipliers, which determine the fields X and ;5 in the same way as before. The fields
P, can be integrated out, just as the tensor fields By
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The Lagrangian (6.13) must be combined with the Lagrangian (R.1)) for the electric
vector supermultiplets, in which we have to introduce the deformations (p.7). In the absence
of magnetic charges (i.e. © = 0), we thus obtain the standard result for electric charges.

In the presence of magnetic charges, the combined action leads to the field equa-
tion (B.27) for the tensor gauge field. For the field equation associated with P;;, we should
first exhibit the deformation of the Lagrangian (B-§) that involves the auxiliary fields Y;;*.
The correct way to introduce the deformation reads as follows,

.ok g _
Ly = — §1€Zk€jl [FAE Yii*Vu” = Fara yz‘jAQkFQlQ]

1. _ y _ o
+ Sicies [Fag VIV — Fypq YA Q|

1 ik = = = — = — =P
- ﬁNAE [5Zk€leAI‘Q Q' Frza U= + e jiFara QM Q Foza QZ“QJA]
1 _ .
+ — N Fyrg 0,70, Frza Q=08 (6.14)

16

Here we observe that the structure of this expression is quite similar to the structure
of (R.9), with the exception of the last term in the expression above which is separately
consistent with respect to electric/magnetic duality. Actually this term cancels exactly
against the last term of (R.4). The result of the field equations associated with the fields
P;;p can now be determined and yields,

1 _
Ch (yijA - [FAEyijE - §FAZFQZ‘EQ]'F}> =0. (6.15)

This equation is in close analogy with the field equation (B.27) for the tensor gauge field.
To make contact with the on-shell results derived in this paper, we need the terms in-

duced by the gauging for the hypermultiplet Lagrangian. Starting with the 2n independent

vector supermultiplets, the terms of order ¢ and ¢? will take the form,

= +2g kan [727ei; C*UM 4 4V (M

L2
9+g hypermultiplet

+ 29 | XMta0 Oy CO¢7 + XM 15 Q5 ¢
+gYIM s — 202k KBy gap XMXN (6.16)

where we include both electric and magnetic Killing potentials. In principle, one should
modify this result by introducing the deformation (p.7). However, the effect of the deforma-
tion drops out in view of the fact that ZM’a,uijM = 0, and the hypermultiplet Lagrangian
is separately supersymmetric in the presence of the gauging.

Subsequently we note that the field Y;;5 appears linearly in the combined Lagrangian,
so that it acts as a Lagrange multiplier. Imposing, at the same time, the gauge condition
that Pj;, is pesudo-real, we obtain the result,

@Aa Pija =—4 ,U,Z'jA . (617)

This introduces the correct supersymmetry variation of the fermion field ;*, because
yij/‘ = YijA +2gi ,uijA. Substituting this last expression into (.14) leads then to additional
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terms in (.16) linear and quadratic in the magnetic Killing potentials ,uijA. These terms
coincide with the corresponding terms given in (§.2§) and (5.30).

It should be interesting to further explore the properties and possible applications of
this off-shell formulation. An obvious question concerns the existence of a non-abelian
version.

7. Summary and discussion

In this paper we presented Lagrangians and supersymmetry transformations for a general
supersymmetric system of vector multiplets and hypermultiplets in the presence of both
electric and magnetic charges. The results were verified to all orders and are consistent
with results known in the literature that are based on purely electric charges. The closure
of the supersymmetry algebra, is realized on shell, but in the previous section we have
indicated how an off-shell representation can be defined consisting of vector and tensor
supermultiplets.

Before discussing possible implications of these results, let us first summarize the terms
induced by the gauging. We first present the combined supersymmetry variations. First
of all, we have the original transformations in the absence of the gauging, where space-
time derivatives are replaced by gauge-covariant derivatives and where the abelian field
strengths F; WA are replaced by the covariant field strengths HWA. We will not repeat the
corresponding expressions here, but we present the other terms in the transformation rules
that are induced by the gauging. They read as follows,

5gQZ~A:—2g TNPA XNxP E€ij ¢ + 2ig ,U,Z‘jAej ,
5g<a:2 gXM k‘AMVXi €ij€j s
5gY;‘jA:_49TMNA|:Q(iM€k5j)kXN_ Qka(zfj)kXN] +4igkt [ﬁk(ﬂj)aAEkC&+€k(i€j)Ca’?§A ;
6Bw,a:—2taMPQPN (AULM 5AI,}N — XMQZ-N%“,ei — XMQiNWﬂ,,ei)
- 41kAa [’YA@'& Ca')’;wel — Ya Ca')/;wei] . (7'1)
Likewise we will not repeat the original Lagrangians (P.J) and (p.9) for the vector
multiplets and hypermultiplets, respectively, modified by the replacement of space-time
derivatives by gauge-covariant ones, and field strengths by the covariant field strengths

HWA. The Lagrangian (B.23) remains unchanged. The additional terms induced by the
gauging that are linear in g take the following form,

L, = —%ig UioTrn® [67 QM QP XN — ey QM QIPXN]
- iy [Fasr 192 Q=" + Fasr pi® Q=07 |

+ 29 kans [¥4 ei; COUM + yhe (oM

+2¢g [X'Mt]\/ﬂa ngy COP + XMy Q35 55‘63}

y 1 _
+ g YA |:MijA + §(FA2 + Fix) Mijz] : (7.2)
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The terms of order g2 correspond to a scalar potential proportional to ¢ and are given by
[,92 = ig2 QMN TPQMXPXQ TRSNXRXS
_ 1 g
— 20k \ kBN gap XM XN — 592 Ny pi® = (7.3)

Eliminating the auxiliary fields Y;jA gives rise to the following expressions. The terms
linear in g read,

1 o _ _ A
ﬁg = —§ig QMQTPNQ [EU QZ‘MQ]‘PXN - Eij QZMQ]PXN]
+ 29 kan [V4 ei; (UM + yhe (oM
+ 2 [ XMt 0, CC7 4+ XM 15 0, ¢
1. _ o _ .
- 519NA2 Fyrz Q"= [ a + Fan 2]
1, = T ~iS
+ §lgNAE Fors QTQ= [pia + Fana pi™] - (7.4)
The resulting potential, which is proportional to g2, follows from
Ly =ig> Qun Tro™ XTXQ TreV XX — 26°k ) kP Ny gap XM XN
Provided the embedding tensor is treated as a spurionic quantity, both these expressions
are invariant under electric/magnetic duality transformations.
The same phenomenon can be seen in the supersymmetry variation of the vector

multiplet fermions, upon integrating out the fields Y;;*. Up to terms quadratic in the
fermions, this variation reads,

1 3 A
00" = 2P X i+ Sy My, ey
- 2g TNPA XNXP Eij Ej - 49]\7[&2 (Mijz + FZF ,U,Z‘jF)Ej y (76)
where the term of order g is consistent with electric/magnetic duality.
The above results have many applications. A relatively simple one concerns the Fayet-
Iliopoulos terms, which are the integration constants of the Killing potentials ;% ;. This
enables us to truncate the above expressions by setting the embedding tensor to zero, while

still retaining the constants gu ;. In that case all effects of the gauging are suppressed
and one is left with a potential accompanied by fermionic masslike terms,

1 o
Lyr = _519NAZ Fyrz Q°Q;% (475 + Faa p7]
1 L
+ §1§]NAE Fors QM= [pia + Faa pi™]
— 267 [ 5 + Far p7"] N™ [pijs + Fos pij~| (7.7)

The above expression transforms as a function under electric/magnetic duality provided
that the p); are treated as spurionic quantities transforming as a 2n-vector under
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Sp(2n,R). To show this one makes use of the transformation rules (R.24) for the second
and third derivatives of the holomorphic function F(X). The last term in ([.]) corresponds
to minus the potential, which is positive definite (assuming positive Npy). The Lagrangian
is a generalization of the Lagrangian presented in [Rf], where it was also shown how the
potential can lead to spontaneous partial supersymmetry breaking when ,uijA # 0. Note
that the hypermultiplets play only an ancillary role here, as they decouple from the vector
multiplets.

Most of the possible applications can be found in the context of supergravity, where
they will be useful for constructing low-energy effective actions associated with string com-
pactifications in the presence of fluxes (see, e.g. [B7]). In principle it is straightforward to
extend our results to the case of local supersymmetry. The target space of the vector multi-
plets should then be restriced to a special Kahler cone (this requires that F'(X) be a homo-
geneous function of second degree), and the hypermultiplet scalars should coordinatize a
hyperkéhler cone. Furthermore the various formulae for the action and the supersymmetry
transformation rules should be evaluated in the presence of a superconformal background,
so that the action and transformation rules will also involve the superconformal fields. This
has not yet been worked out in detail for N = 2 supergravity, although it is in principle
straightforward. In view of the fact that gaugings of N =4 and N = 8 supergravity have
already been worked out using the same formalism as in this paper [B, B, no complications
are expected. Note that Fayet-Iliopoulos terms do not exist in N = 2 supergravity because
the Killing potentials cannot contain arbitrary integration constants as those would break
the scale invariance of the hyperkahler cone.

The potential is rather independent of all these details, although it must be rewritten
in terms of the appropriate quantities, as was for instance demonstrated in [P4]. It was
already shown in [] that the theory simplifies considerably for abelian gaugings where
Tarn' = 0 and where the potential is exclusively generated by the hypermultiplet charges.
Making use of the steps described in [R4], it is rather straightforward to derive the potential
(as was already foreseen in [fl]), which takes precisely the form conjectured quite some time
ago (c.f. eq. (3.16) in [2§]).

Another application concerns domain wall solutions. In [Rg] such solutions were studied
in N = 2 supergravity with both electric and magnetic charges. The transformation rules
postulated in that work are in qualitative agreement with the ones established in this paper,
at least as far as the terms are concerned that are relevant for the potential (observe that a
magnetic gauge field was absent). A more precise comparison again requires the extention

of our results to the case of local supersymmetry.
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