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1. Introduction

In four space-time dimensions, theories with abelian gauge fields may have more sym-

metries than are apparent from the Lagrangian (or the corresponding action). The full

invariance group may include symmetries of the combined field equations and Bianchi

identities that are not realized at the level of the Lagrangian. This group is a subgroup

of the electric/magnetic duality group, which, for n vector fields, is equal to Sp(2n, R).

Under a generic electric/magnetic duality the Lagrangian will in general change, but the

new Lagrangian will still lead to an equivalent set of field equations and Bianchi identi-

ties. Therefore these different Lagrangians, which do not have to share the same symmetry

group, belong to the same equivalence class. When the Lagrangian does not change under

a duality (possibly after combining with corresponding transformations of the other fields)

one is dealing with an invariance of the theory. To appreciate this feature, it is important to

note that a Lagrangian does not transform as a function under duality transformations. In

fact the gauge fields before and after the transformation are not related by a local field re-

definition. This is the underlying reason why the full invariance is not necessarily reflected

by an invariance of the Lagrangian that is induced by transformations of the various fields.

When introducing charges for some of the fields, the standard procedure is to introduce

minimal couplings and covariant field strengths in the Lagrangian. This implies that the

charges are all electric. The gauge group will therefore be contained in the invariance

group of the Lagrangian, so that one cannot necessarily gauge any subgroup of the full

invariance group. In that case one has two options. Either one uses electric/magnetic
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duality to obtain another Lagrangian belonging to the same equivalence class that has

a more suitable invariance group in which the desired gauge group can be embedded,

or, one uses a recently proposed formalism that incorporates both electric and magnetic

charges [1]. The latter allows one to start from any particular Lagrangian belonging to a

certain equivalence class, provided that this class contains at least one Lagrangian in which

all the charges that one intends to switch on are electric.

In this paper we study general gaugings of N = 2 supersymmetric gauge theories,

based on vector multiplets and hypermultiplets. It is well known that the introduction of

charged fields in a supersymmetric field theory tends to break supersymmetry. To preserve

supersymmetry the theory has to be extended with a scalar potential and masslike terms.

The goal is to derive these terms in the context of the formalism presented in [1]. It is not the

first time that this formalism has been used for four-dimensional supersymmetric theories.

In [2] it was successfully applied to N = 4 supergravity and in [3] to N = 8 supergravity. In

this approach the cumbersome procedure according to which the ungauged Lagrangian has

to be converted to a suitable electric frame, prior to switching on the charges, is avoided.

Moreover, the scalar potential and masslike terms that accompany the gaugings are found

in a way that is independent of the electric/magnetic duality frame. By introducing both

electric and magnetic charges the potential will thus fully exhibit the duality invariances.

This is of interest, for example, when studying flux compactifications in string theory,

because the underlying fluxes are usually subject to integer-valued rotations associated to

the non-trivial cycles of the underlying internal manifold.

The framework of [1] incorporates both electric and magnetic charges and their corre-

sponding gauge fields. The charges are encoded in terms of a so-called embedding tensor,

which defines the embedding of the gauge group into the full rigid invariance group. This

embedding tensor is treated as a spurionic object, so that the electric/magnetic duality

structure of the ungauged theory is preserved after charges are turned on. Besides intro-

ducing a set of dual magnetic gauge fields, tensor fields are required that transform in the

adjoint representation of the rigid invariance group. These extra fields carry additional off-

shell degrees of freedom, but the number of physical degrees of freedom remains the same,

owing to extra gauge transformations. Prior to [1] it had already been discovered that

magnetic charges tend to be accompanied by tensor fields. An early example of this was

presented in [4], and subsequently more theories with magnetic charges and tensor fields

were constructed, for instance, in [5 – 7]. However, in these references the gauge groups are

abelian.

The starting point of this paper is the expression for N = 2 supersymmetric La-

grangians of n vector supermultiplets, labeled by indices Λ = 1, . . . , n. This Lagrangian is

encoded in terms of a holomorphic function F (X), which, for the abelian case, takes the

following form,

L0 = i ∂µFΛ ∂µX̄Λ +
1

2
iFΛΣ Ω̄i

Λ/∂ΩiΣ +
1

4
iFΛΣ F−

µν
Λ F−Σ µν −

1

8
iFΛΣ Yij

Λ Y ijΣ

+
1

8
iFΛΣΓ Y ijΛ Ω̄Σ

i ΩΓ
j −

1

16
iFΛΣΓ Ω̄i

ΛγµνΩΓ
j εij F−

µν
Σ

−
1

48
i εijεkl FΛΣΓΞ Ω̄Λ

i ΩΣ
k Ω̄Γ

j ΩΞ
l + h.c. , (1.1)
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where FΛ1···Λk
denotes the k-th derivative of F (X). The fermion fields ΩΛ and the auxiliary

fields Y Λ carry SU(2) indices i, j, . . . = 1, 2. Spinors Ωi
Λ have positive, and spinors ΩiΛ have

negative chirality (so that γ5Ωi
Λ = Ωi

Λ and γ5ΩiΛ = −ΩiΛ). The auxiliary fields satisfy

the pseudo-reality constraint (Yij
Λ)∗ = εikεjlYΛ

kl. The tensors F±
µν

Λ are the (anti-)selfdual

components of the field strengths, which will be expressed in terms of vector fields Aµ
Λ.

Even when all charges are electric it is possible that the function F (X) is not invariant

under the gauge group. In that case the gauge group must be non-semisimple [8]. The gauge

group for the hypermultiplets can be either abelian or non-abelian, but a non-trivial gauge

group for the vector multiplets is always non-abelian, possibly with a central extension.

The supersymmetric Lagrangians derived in this paper incorporate gaugings in both

the vector and hypermultiplet sectors. Although the vector multiplets are originally defined

as off-shell multiplets, the presence of the magnetic charges causes a breakdown of off-shell

supersymmetry. Of course, hypermultiplets are not based on an off-shell representation

of the supersymmetry algebra irrespective of the presence of charges. It is an interest-

ing question whether the results of this section can be reformulated such that the vector

multiplets retain their off-shell form and, indeed, we show that such an off-shell version

can be constructed based on vector and tensor supermultiplets. However, we refrain from

considering the extension of the theories of this paper to supergravity. This extension is

expected to be straightforward upon use of the superconformal multiplet calculus [8 – 10].

We intend to return to this topic elsewhere.

This paper is organized as follows. In section 2 we recall the relevant features of N = 2

vector multiplets and electric/magnetic duality, and discuss the introduction of electric

and magnetic charges. In section 3 we introduce the embedding tensor and we review the

formalism of [1]. Section 4 deals with the restoration of supersymmetry in vector multiplet

models after a gauging, and section 5 gives the extension with hypermultiplets. The off-

shell formulation of the theories of this paper is discussed in section 6, and in section 7 we

summarize the results obtained and briefly indicate some of their applications.

2. Vector multiplets, electric/magnetic duality, and non-abelian charges

In this section we discuss electric/magnetic duality and the introduction of charges for sys-

tems of vector supermultiplets. To facilitate the presentation it is convenient to decompose

the Lagrangian (1.1) as follows,

L0 = Lmatter + Lkin + LΩ4 + LY , (2.1)

where Lmatter contains the kinetic terms of the scalar and spinor fields,

Lmatter = i
(

∂µFΛ ∂µX̄Λ − ∂µF̄Λ ∂µXΛ
)

−
1

4
NΛΣ

(

Ω̄iΛ/∂Ωi
Σ + Ω̄i

Λ/∂ΩiΣ
)

−
1

4
i
(

Ω̄i
Λ/∂FΛΣΩiΣ − Ω̄iΛ/∂F̄ΛΣΩi

Σ
)

. (2.2)
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The kinetic terms of the vector fields combined with a number of terms that are related to

them by electric/magnetic duality, are contained in Lvector,

Lvector =
1

4
i
(

FΛΣF−Λ
µν F−Σ µν − F̄ΛΣF+Λ

µν F+Σ µν
)

−
1

16
i
(

FΛΣΓΩ̄Λ
i γµνF−Σ

µν ΩΓ
j εij − F̄ΛΣΓΩ̄iΛ γµνF+Σ

µν ΩjΓ εij

)

−
1

256
iN∆Ω

(

F∆ΛΣΩ̄i
ΛγµνΩj

Σεij
)(

FΓΞΩΩ̄k
ΓγµνΩl

Ξεkl
)

+
1

256
iN∆Ω

(

F̄∆ΛΣΩ̄iΛγµνΩjΣεij

)(

F̄ΓΞΩΩ̄kΓγµνΩlΞεkl

)

. (2.3)

Quartic spinor terms that are consistent with respect to electric/magnetic duality, are given

by

LΩ4 =
1

384
i
(

FΛΣΓΞ + 3 iN∆Ω F∆(ΛΓFΣΞ)Ω

)

Ω̄i
ΛγµνΩj

Σεij Ω̄k
ΓγµνΩl

Ξεkl

−
1

384
i
(

F̄ΛΣΓΞ − 3 iN∆ΩF̄∆(ΛΓF̄ΣΞ)Ω

)

Ω̄iΛγµνΩjΣεij Ω̄kΓγµνΩlΞεkl

−
1

16
N∆ΩF∆ΛΣF̄ΓΞΩ Ω̄iΓΩjΞ Ω̄i

ΛΩj
Σ , (2.4)

and, finally, LY comprises the terms associated with the auxiliary fields Yij
Λ,

LY =
1

8
NΛΣ

(

NΛΓYij
Γ +

1

2
i(FΛΓΩ Ω̄i

ΓΩj
Ω − F̄ΛΓΩ Ω̄kΓΩlΩεikεjl)

)

×

(

NΣΞY ijΞ +
1

2
i(FΣΞ∆ Ω̄m

ΞΩn
∆εimεjn − F̄ΣΞ∆ Ω̄iΞΩj∆)

)

. (2.5)

This last result for LY is not obviously consistent with electric/magnetic duality. We return

to this in a sequal. Here and henceforth we use the notation,

NΛΣ = −iFΛΣ + iF̄ΛΣ , NΛΣ ≡ [N−1]ΛΣ . (2.6)

Note that NΛΣ plays the role of the inverse effective coupling constants while the real part

of FΛΣ plays the role of the generalized theta angles.

The non-linear sigma model contained in (2.3) exhibits an interesting geometry known

as special geometry. The complex scalars XΛ parametrize an n-dimensional target space

with metric gΛΣ̄ = NΛΣ. This is a Kähler space: its metric equals gΛΣ̄ = ∂2K(X, X̄)/

∂XΛ ∂X̄Σ, with Kähler potential

K(X, X̄) = iXΛ F̄Λ(X̄) − iX̄Λ FΛ(X) . (2.7)

The supersymmetry transformations that leave the action corresponding to (2.1) in-

variant, are given by

δXΛ = ǭiΩ Λ
i ,

δAµ
Λ = εij ǭiγµΩj

Λ + εij ǭ
iγµΩj Λ ,

δΩi
Λ = 2/∂XΛǫi +

1

2
γµνF−

µν
Λεijǫ

j + Yij
Λǫj ,

δYij
Λ = 2ǭ(i/∂Ωj)

Λ + 2εikεjl ǭ
(k/∂Ωl)Λ . (2.8)
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In the absence of charged fields, abelian gauge fields Aµ
Λ appear exclusively through

the field strengths, Fµν
Λ = 2 ∂[µAν]

Λ (we consider Lagrangians that are at most quadratic

in derivatives). The field equations for these fields and the Bianchi identities for the field

strengths comprise 2n equations,

∂[µFνρ]
Λ = 0 = ∂[µGνρ] Λ , (2.9)

where

Gµν Λ = εµνρσ
∂L

∂Fρσ
Λ

. (2.10)

In the case at hand this implies,

G−
µνΛ = FΛΣ F−

µν
Σ −

1

8
FΛΣΓ Ω̄i

ΣγµνΩj
Γ εij . (2.11)

It is convenient to combine the tensors Fµν
Λ and GµνΛ into a 2n-dimensional vector,

Gµν
M =

(

Fµν
Λ

GµνΛ

)

, (2.12)

so that (2.9) reads ∂[µGνρ]
M = 0. Obviously these 2n equations are invariant under real

2n-dimensional rotations of the tensors Gµν
M ,

(

FΛ

GΛ

)

−→

(

UΛ
Σ ZΛΣ

WΛΣ VΛ
Σ

)(

FΣ

GΣ

)

. (2.13)

Half of the rotated tensors can be adopted as new field strengths defined in terms of new

gauge fields, and the Bianchi identities on the remaining tensors can then be interpreted

as field equations belonging to some new Lagrangian expressed in terms of the new field

strengths. In order that such a Lagrangian exists, the real matrix in (2.13) must belong to

the group Sp(2n; R). This group consists of real matrices that leave the skew-symmetric

tensor ΩMN invariant,

Ω =

(

0 1

−1 0

)

. (2.14)

The conjugate matrix ΩMN is defined by ΩMNΩNP = −δM
P . Here we employ an Sp(2n, R)

covariant notation for the 2n-dimensional symplectic indices M,N, . . ., such that ZM =

(ZΛ, ZΛ). Likewise we use vectors with lower indices according to YM = (YΛ, Y Λ), trans-

forming according to the conjugate representation so that ZM YM is invariant.

The Sp(2n; R) transformations are known as electric/magnetic dualities, which also act

on electric and magnetic charges (for a review of electric/magnetic duality, see [11]). The

Lagrangian depends on the electric/magnetic duality frame and is therefore not unique.1

Different Lagrangians related by electric/magnetic duality lead to equivalent field equations

and thus belong to the same equivalence class. These alternative Lagrangians remain

1Up to terms proportional to the field equations of the vector fields and the auxiliary fields, the La-

grangian is covariant under electric/magnetic duality.
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supersymmetric and when applying suitable redefinitions to the other fields, they can

again be brought into the form (2.3), characterized by a new holomorphic function F (X).

In other words, different functions F (X) can belong to the same equivalence class. The

new function is such that the vector XM = (XΛ, FΛ) transforms under electric/magnetic

duality according to

(

XΛ

FΛ

)

−→

(

X̃Λ

F̃Λ

)

=

(

UΛ
Σ ZΛΣ

WΛΣ VΛ
Σ

)(

XΣ

FΣ

)

. (2.15)

The new function F̃ (X̃) of the new scalars X̃Λ follows from integration of (2.15) and takes

the form

F̃ (X̃) = F (X) −
1

2
XΛFΛ(X) +

1

2
(UTW )ΛΣXΛXΣ

+
1

2
(UTV + WTZ)Λ

ΣXΛFΣ(X) +
1

2
(ZTV )ΛΣFΛ(X)FΣ(X) , (2.16)

up to a constant and to terms linear in the X̃Λ. These terms, which will be ignored in what

follows, cannot be present in the case of local supersymmetry. In general it is not easy to

determine F̃ (X̃) from (2.16) as it involves the inversion of X̃Λ = UΛ
ΣXΣ + ZΛΣFΣ(X).

The duality transformations on higher derivatives of F (X) follow by differentiation and we

note the results [12],

F̃ΛΣ(X̃) = (VΛ
ΓFΓΞ + WΛΞ) [S−1]ΞΣ ,

F̃ΛΣΓ(X̃) = FΞ∆Ω [S−1]ΞΛ [S−1]∆Σ [S−1]ΩΓ , (2.17)

where SΛ
Σ = ∂X̃Λ/∂XΣ = UΛ

Σ + ZΛΓFΓΣ. From the first equation one derives,

ÑΛΣ(X̃, ˜̄X) = NΓ∆ [S−1]ΓΛ [S̄−1]∆Σ . (2.18)

To determine the action of the dualities on the fermions, we consider supersymmetry

transformations of XM = (XΛ, FΛ), which take the form δXM = ǭiΩi
M , thus defining an

Sp(2n, R) covariant fermionic vector Ωi
M ,

Ωi
M =

(

Ωi
Λ

FΛΣ Ωi
Σ

)

. (2.19)

Complex conjugation leads to a second vector, ΩiM , of opposite chirality. From (2.19) one

derives directly that, under electric/magnetic duality,

Ω̃i
Λ = SΛ

Σ Ωi
Σ . (2.20)

With this result one can show that (2.13), (2.17) and (2.20) are consistent.

The supersymmetry transformation of Ωi
M takes the following form,

δΩi
M = 2/∂XM ǫi +

1

2
γµνG−

µν
Mεijǫ

j + Zij
M ǫj , (2.21)
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where

Zij
M =

(

Yij
Λ

FΛΣ Yij
Σ − 1

2FΛΣΓ Ω̄i
ΣΩj

Γ

)

. (2.22)

This suggests that Zij
M transforms under electric/magnetic duality as a symplectic vector.

However, this is only possible provided we drop the pseudo-reality constraint on Yij
Λ.

In that case imposing a pseudo-reality condition on Zij
M is manifestly consistent with

Sp(2n; R) and implies both the pseudo-reality of and the field equations associated with

the Yij
Λ.

The electric/magnetic duality transformations thus define equivalence classes of La-

grangians. A subgroup thereof may constitute an invariance of the theory [13], meaning

that the Lagrangian and its underlying function F (X) do not change [10, 14]. More specif-

ically, an invariance implies

F̃ (X̃) = F (X̃) , (2.23)

so that the result of the duality leads to a Lagrangian based on F̃ (X̃) which is identical

to the original Lagrangian. Because F̃ (X̃) 6= F (X), as is obvious from (2.16), F (X) is not

an invariant function. Instead the above equation implies that the substitution XΛ → X̃Λ

into the function F (X) and its derivatives, induces precisely the duality transformations.

For example, we obtain,

FΛ(X̃) = VΛ
ΣFΣ(X) + WΛΣXΣ ,

FΛΣ(X̃) = (VΛ
ΓFΓΞ + WΛΞ) [S−1]ΞΣ ,

FΛΣΓ(X̃) = FΞ∆Ω [S−1]ΞΛ [S−1]∆Σ [S−1]ΩΓ . (2.24)

We elucidate these invariances for the subgroup that acts linearly on the gauge fields

Aµ
Λ. These symmetries are characterized by the fact that the matrix in (2.13) and (2.15)

has a block-triangular form with V = [UT]−1 and Z = 0. Hence this is not a general duality

as the Lagrangian is still based on the same gauge fields, up to the linear transformation

Aµ
Λ → Ãµ

Λ = UΛ
ΣAµ

Σ. Note that all fields in the Lagrangian (2.3) carry upper indices

and are thus subject to the same linear transformation. The function F (X) changes with

an additive term which is a quadratic polynomial with real coefficients.

F̃ (X̃) = F (UΛ
ΣXΣ) = F (X) +

1

2
(UTW )ΛΣ XΛXΣ . (2.25)

This term induces a total derivative term in the Lagrangian, equal to

L → L−
1

8
iεµνρσ(UTW )ΛΣ Fµν

ΛFρσ
Σ . (2.26)

2.1 Gauge transformations

Non-abelian gauge groups will act non-trivially on the vector fields and must therefore

involve a subgroup of the duality group. The electric gauge fields Aµ
Λ associated with

this gauge group are provided by vector multiplets. Because the duality group acts on

both electric and magnetic charges, in view of the fact that it mixes field strengths with

dual field strengths as shown by (2.13), we will eventually introduce magnetic gauge fields

– 7 –
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AµΛ as well, following the procedure explained in [1]. The 2n gauge fields Aµ
M will then

comprise both type of fields, Aµ
M = (Aµ

Λ, AµΛ). The role played by the magnetic gauge

fields will be clarified later. For the moment one may associate Aµ Λ with the dual field

strengths Gµν Λ, by writing Gµν Λ ≡ 2 ∂[µAν]Λ.

The generators (as far as their embedding in the duality group is concerned) are de-

fined as follows. The generators of the subgroup that is gauged, are 2n-by-2n matrices

TM , where we are assuming the presence of both electric and magnetic gauge fields, so

that the generators decompose according to TM = (TΛ, TΛ). Obviously TΛN
P and TΛ

N
P

can be decomposed into the generators of the duality group and are thus of the form

specified in (2.13). Denoting the gauge group parameters by ΛM (x) = (ΛΛ(x),ΛΛ(x)),

2n-dimensional Sp(2n; R) vectors Y M and ZM transform according to

δY M = −gΛN TNP
M Y P , δZM = gΛN TNM

P ZP , (2.27)

where g denotes a universal gauge coupling constant. Covariant derivatives thus take the

form,

DµY M = ∂µY M + gAµ
N TNP

M Y P

= ∂µY M + gAµ
Λ TΛP

M Y P + gAµΛ TΛ
P

M Y P , (2.28)

and similarly for DµZM . The gauge fields then transform according to

δAµ
M = ∂µΛM + g TPQ

MAµ
P ΛQ . (2.29)

For clarity we first consider electric gaugings where the gauge transformations have a

block-triangular form and there are only electric gauge fields. Hence we ignore the fields

AµΛ and assume TΛ
N

P = 0 and TΛ
ΣΓ = 0. All the fields in the Lagrangian carry upper

indices, so that they will transform as in δXΛ = −gΛΓTΓΣ
Λ XΣ. The transformation

rule for Aµ
Λ given above is in accord with this expression, provided we assume that TΓΣ

Λ

is antisymmetric in Γ and Σ. This has to be the case here as consistency requires that

the TΓΣ
Λ are structure constants of the non-abelian group. In the more general situation

discussed in later sections, this is not necessarily the case. The embedding into Sp(2n, R)

implies furthermore that TΛΣ
Γ = −TΛ

Σ
Γ, while the nonvanishing left-lower block TΛΣΓ is

symmetric in Σ and Γ.

Furthermore we note that (2.25) implies

FΛ(X) δXΛ = −gΛΓTΓΣ
Λ FΛ(X)XΣ = −

1

2
g ΛΛ TΛΣΓXΣXΓ . (2.30)

Upon replacing ΛΛ with XΛ we conclude that the fully symmetric part of TΛΣΓ vanishes.

This, and the closure of the gauge group, leads to the following three equations,

T(ΛΣΓ) = 0 ,

T[ΛΣ
∆ TΓ]∆

Ξ = 0 ,

4T(Γ[Λ
∆ TΣ]Ξ)∆ − TΛΣ

∆T∆ΓΞ = 0 . (2.31)

– 8 –
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The variation of the Lagrangian (2.26) under gauge transformations now takes the form

L → L +
1

8
i εµνρσ ΛΛ TΛΣΓ Fµν

ΣFρσ
Γ , (2.32)

where the tensors Fµν
Λ denote the non-abelian field strengths,

Fµν
Λ = ∂µAν

Λ − ∂νAµ
Λ + g TΣΓ

Λ Aµ
ΣAν

Γ . (2.33)

This result implies that (2.32) no longer constitutes a total derivative in view of the space-

time dependent transformation parameters ΛΛ(x). Therefore its cancellation requires to

add a new type of term [8],

L =
1

3
ig εµνρσ TΛΣΓ Aµ

ΛAν
Σ

(

∂ρAσ
Γ +

3

8
g TΞ∆

Γ Aρ
ΞAσ

∆

)

. (2.34)

No other terms in the action will depend on TΛΣΓ. At this point we should remind the

reader that the gauging breaks supersymmetry, unless one adds the standard masslike and

potential terms to the Lagrangian (2.1), which involve the TΛΣ
Γ. We present them below

for completeness,

Lg = −
1

2
g NΛΣTΓΞ

Σ
[

εij Ω̄i
ΛΩj

ΓX̄Ξ + εij Ω̄iΛΩjΓXΞ
]

,

Lg2 = g2 NΛΣ TΓΞ
ΛX̄ΓXΞ T∆Ω

ΣX̄∆XΩ . (2.35)

In later sections we will exhibit the generalization of these terms to the case where both

electric and magnetic charges are present.

2.2 Electric and magnetic charges

We now consider more general gauge groups without restricting ourselves to electric charges.

Therefore we include both electric gauge fields Aµ
Λ and magnetic gauge fields Aµ Λ. Only a

subset of these fields is usually involved in the gauging, but the additional magnetic gauge

fields could conceivably lead to new propagating degrees of freedom. We will discuss in

due course how this is avoided. In this subsection we consider the scalar and spinor fields.

The treatment of the vector fields is more involved and is explained in section 3.

The charges TMN
P correspond to a more general subgroup of the duality group. Hence

they must take values in the Lie algebra associated with Sp(2n, R), which implies,

TM [N
Q ΩP ]Q = 0 . (2.36)

Combining the two equations (2.16) and (2.23) leads to the condition [10],

TMN
QΩPQ XNXP = TMΛΣXΛXΣ − 2TMΛ

ΣXΛFΣ − TM
ΛΣFΛFΣ = 0 . (2.37)

This result can also be written as

FΛδXΛ = −
1

2
ΛM

(

TMΛΣXΛXΣ + TM
ΛΣFΛFΣ

)

, (2.38)
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which generalizes (2.30). Furthermore we impose the so-called representation constraint [1],

which implies that we suppress a representation of the rigid symmetry group in TMN
P ,

T(MN
Q ΩP )Q = 0 =⇒



















T (ΛΣΓ) = 0 ,

2T (ΓΛ)
Σ = TΣ

ΛΓ ,

T(ΛΣΓ) = 0 ,

2T(ΓΛ)
Σ = TΣ

ΛΓ .

(2.39)

This constraint is a generalization of the first equation (2.31). Observe that the generators

TΛΣ
Γ are no longer antisymmetric in Λ and Σ, a feature that we will discuss in more detail

in section 3.

The action of electric/magnetic duality on the fermions was already discussed earlier

when introducing the Sp(2n, R) covariant fermionic vector Ωi
M (c.f. (2.19)). In terms of

this field we can rewrite the Lagrangian (2.2) in a compact form,

Lmatter = −iΩMN ∂µXM ∂µX̄N +
1

4
iΩMN

[

Ω̄iM /∂Ωi
N − Ω̄i

M /∂ΩiN
]

. (2.40)

In the expressions on the right-hand side it is straightforward to replace the ordinary

derivatives by the covariant ones defined in (2.28), i.e.,

DµXM = ∂µXM + g Aµ
N TNP

M XP ,

DµΩi
M = ∂µΩi

M + g Aµ
N TNP

M Ωi
P , (2.41)

and evaluate the gauge couplings. In particular we can then compare to the results of

subsection 2.1, where we considered only electric gauge fields with charges restricted by

TΛ
ΣΓ = 0. To do this systematically we note the identity,

TMNΛXN − FΛΣ TMN
ΣXN = 0 . (2.42)

This equation can also be written as FΛΣ δXΣ = −gΛMTMNΛXN , which is the infinites-

imal form of the first equation (2.24). Alternatively it can be derived from (2.37) upon

differentiation with respect to XΛ.

It is possible to cast (2.42) in a symplectically covariant form by introducing a vector

UM = (UΛ, FΣΓUΓ), so that

ΩMQTNP
Q XP UM = 0 , (2.43)

for any such vector UM . This form is convenient in calculations presented later.

From (2.42) one easily derives that DµXΛ = DµFΛ = FΛΣ DµXΣ, which enables one

to derive

− iΩMN DµXM DµX̄N = −NΛΣ DµXΛ DµX̄Σ . (2.44)

This result shows that the generators TMΛΣ are absent, in accord with what was found in

subsection 2.1.

Next we consider the gauge field interactions with the fermions. It is convenient to

first derive an additional identity, which follows from taking a supersymmetry variation

of (2.42),

TMNΛΩi
N = FΛΣ TMN

ΣΩi
N + FΛΣΓ Ωi

Σ TMN
ΓXN . (2.45)
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This result can be obtained from the infinitesimal form of the third equation of (2.24).

Using this equation one verifies that DµΩiΛ = FΛΣ DµΩi
Σ + FΛΣΓ Ωi

ΓDµXΣ, which leads

to

1

4
iΩMN

[

Ω̄iM /DΩi
N − Ω̄i

M /DΩiN
]

=−
1

4
NΛΣ

(

Ω̄iΛ /DΩi
Σ + Ω̄i

Λ /DΩiΣ
)

−
1

4
i
(

FΛΣΓΩ̄i
Λ /DXΣΩiΓ − F̄ΛΣΓΩ̄iΛ /DX̄ΣΩi

Γ
)

. (2.46)

Again the generator TMΛΣ is absent in the expression above. The results of this subsection

explain how to introduce the electric and magnetic charges, but in no way ensure the gauge

invariance or the supersymmetry of the Lagrangian. To obtain such a result we first need

to explain some more general features of theories with both electric and magnetic gauge

fields in four space-time dimensions. This is the topic of the following section.

As a side remark we note that the Killing potential (or moment map) associated with

the isometries considered above, takes the form,

νM = TMN
QΩPQX̄NXP . (2.47)

Indeed, making use again of (2.42), one straightforwardly derives ∂ΛνM = iNΛΣ δX̄Σ.

Finally we return to the gauge transformations of the auxiliary fields Yij
Λ, which can

be derived by requiring that the Lagrangian (2.5) is gauge invariant. A straightforward

calculation lead to the following result,

δYij
Λ = −

1

2
ΛMTMN

Λ(Zij
N + εikεjl Z

klN) , (2.48)

where Zij
M was defined in (2.22). Note that this result is in accord with the elec-

tric/magnetic dualities suggested for Zij
M .

3. The gauge group and the embedding tensor

Here we follow [1] and discuss the embedding of possible gauge groups into the rigid invari-

ance group Grigid of the theory. In the context of this paper, the latter is often a product

group as the vector multiplets and the hypermultiplets are invariant under independent

symmetry groups. As explained in the previous section the non-abelian gauge transfor-

mations on the vector multiplets must be embedded into the electric/magnetic duality

group.

It is convenient to discuss group embeddings in terms of a so-called embedding ten-

sor ΘM
a which specifies the decomposition of the gauge group generators TM into the

generators associated with the full rigid invariance group Grigid,

TM = ΘM
a ta . (3.1)

Not all the gauge fields have to be involved in the gauging, so generically the embedding

tensor projects out certain combinations of gauge fields; the rank of the tensor determines

the dimension of the gauge group, up to central extensions associated with abelian factors.
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Decomposing the embedding tensor as ΘM
a = (ΘΛ

a,ΘΛ a), covariant derivatives take the

form,

Dµ ≡ ∂µ − gAµ
MTM = ∂µ − gAµ

ΛΘΛ
a ta − gAµ ΛΘΛ a ta . (3.2)

The embedding tensor will be regarded as a spurionic object which can be assigned to a

(not necessarily irreducible) representation of the rigid invariance group Grigid.

It is known that a number of (Grigid-covariant) constraints must be imposed on the

embedding tensor. We already encountered the representation constraint (2.39), which is

linear in the embedding tensor. Two other constraints are quadratic in the embedding

tensor and read,

fab
c ΘM

a ΘN
b + (ta)N

P ΘM
aΘP

c = 0 , (3.3)

ΩMN ΘM
aΘN

b = 0 ⇐⇒ ΘΛ [aΘΛ
b] = 0 , (3.4)

where the fab
c are the structure constants associated with the group G. The first constraint

is required by the closure of the gauge group generators. Indeed, from (3.3) it follows that

the gauge algebra generators close according to

[TM , TN ] = −TMN
P TP , (3.5)

where the structure constants of the gauge group coincide with TMN
P ≡ ΘM

a (ta)N
P up

to terms that vanish upon contraction with the embedding tensor ΘP
a. We recall that

the TMN
P generate a subgroup of Sp(2n, R) in the (2n)-dimensional representation, so

that they are subject to the condition (2.36). In electric/magnetic components the latter

condition corresponds to TMΛ
Σ = −TM

Σ
Λ, TMΛΣ = TMΣΛ and TM

ΛΣ = TM
ΣΛ.

Note that (3.3) implies that the embedding tensor is gauge invariant, while the sec-

ond quadratic constraint (3.4) implies that the charges are mutually local, so that an

electric/magnetic duality exists that converts all the charges to electric ones. These two

quadratic constraints are not completely independent, as can be seen from symmetrizing

the constraint (3.3) in (MN) and making use of the linear conditions (2.39) and (2.36).

This leads to

ΩMN ΘM
aΘN

b (tb)P
Q = 0 . (3.6)

This shows that, for non-vanishing (tb)P
Q, the second quadratic constraint (3.4) is in

fact a consequence of the other constraints. The constraint (3.4) is only an independent

constraint when a and b do not refer to generators that act on the vector multiplets. This

issue is relevant here as Grigid may contain independent generators that act exclusively in

the matter (i.e., hypermultiplet) sector.

A further consequence of (2.39) is the equation

T(MN)
P = ZP,a da MN , (3.7)

with

da MN ≡ (ta)M
P ΩNP ,

ZM,a ≡
1

2
ΩMNΘN

a =⇒

{

ZΛa = 1
2ΘΛa ,

ZΛ
a = −1

2ΘΛ
a ,

(3.8)
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so that da MN defines a Grigid-invariant tensor symmetric in (MN). The gauge invariant

tensor ZM,a will serve as a projector on the tensor fields to be introduced below [16]. We

note that the constraint (3.4) can now be written as,

ZM,a ΘM
b = 0 . (3.9)

Let us return to the closure relation (3.5). Although the left-hand side is antisymmetric

in M and N , this does not imply that TMN
P is antisymmetric as well, but only that its

symmetric part vanishes upon contraction with the embedding tensor. Indeed, this is

reflected by (3.7) and (3.9). Consequently, the Jacobi identity holds only modulo terms

that vanish upon contraction with the embedding tensor, as is shown explicitly by

T[MN ]
P T[QP ]

R + T[QM ]
P T[NP ]

R + T[NQ]
P T[MP ]

R = −ZR,a daP [Q TMN ]
P . (3.10)

To compensate for this lack of closure and, at the same time, to avoid unwanted degrees

of freedom, we introduce an extra gauge invariance for the gauge fields, in addition to the

usual nonabelian gauge transformations,

δAµ
M = DµΛM − g ZM,a Ξµ a , (3.11)

where the ΛM are the gauge transformation parameters and the covariant derivative reads,

DµΛM = ∂µΛM + g TPQ
M Aµ

P ΛQ. The transformations proportional to Ξµ a enable one to

gauge away those vector fields that are in the sector of the gauge generators TMN
P where

the Jacobi identity is not satisfied (this sector is perpendicular to the embedding tensor by

virtue of (3.9)). Note that the covariant derivative is invariant under the transformations

parametrized by Ξµ a, because of the contraction of the gauge fields Aµ
M with the generators

TM . The gauge symmetries parametrized by the functions ΛM (x) and Ξaµ(x) form a group,

as follows from the commutation relations,

[δ(Λ1), δ(Λ2)] = δ(Λ3) + δ(Ξ3) ,

[δ(Λ), δ(Ξ)] = δ(Ξ̃) , (3.12)

where

Λ3
M = g T[NP ]

MΛN
2 ΛP

1 ,

Ξ3µa = daNP (ΛN
1 DµΛP

2 − ΛN
2 DµΛP

1 ) ,

Ξ̃µa = gΛP (TP a
b + 2daPNZN,b)Ξµb . (3.13)

The field strengths follow from the Ricci identity, [Dµ,Dν ] = −gFµν
M TM , and depend

only on the antisymmetric part of TMN
P ,

Fµν
M = ∂µAν

M − ∂νAµ
M + g T[NP ]

M Aµ
NAν

P . (3.14)

Because of the lack of closure expressed by (3.10), they do not satisfy the Palatini identity,

δFµν
M = 2D[µδAν]

M − 2g T(PQ)
M A[µ

P δAν]
Q , (3.15)
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under arbitrary variations δAµ
M . Note that the last term cancels upon multiplication

with the generators TM . The result (3.15) shows that Fµν
M transforms under gauge

transformations as

δFµν
M = g ΛP TNP

M Fµν
N − 2g ZM,a(D[µΞν]a + daPQ A[µ

P δAν]
Q) , (3.16)

and is therefore not covariant. The standard strategy is therefore to define modified field

strengths,

Hµν
M = Fµν

M + g ZM,a Bµν a , (3.17)

by introducing new tensor fields Bµν a with suitably chosen gauge transformation rules, so

that covariant results can be obtained.

At this point we remind the reader that the invariance transformations in the rigid case

implied that the field strengths Gµν
M transform under a subgroup of Sp(2n, R) (c.f. (2.13)).

Our aim is to find a similar symplectric vector of field strengths so that these transfor-

mations are generated in the non-abelian case as well. This is not possible based on the

variations of the vector fields Aµ
M , which will never generate the type of fermionic terms

contained in GµνΛ. However, the presence of the tensor fields enables us to achieve our

objectives, at least in part. Just as in the abelian case, we define an Sp(2n, R) vector of

field strengths Gµν
M by

G−
µν

Λ = H−
µν

Λ ,

G−
µνΛ = FΛΣ H−

µν
Σ −

1

8
FΛΣΓ Ω̄i

ΣγµνΩj
Γ εij . (3.18)

Note that the expression for GµνΛ is the analogue of (2.11), with Fµν
Λ replaced by Hµν

Λ.

Following [1] we introduce the following transformation rule for Bµνa (contracted with

ZM,a, because only these combinations will appear in the Lagrangian),

ZM,a δBµν a = 2ZM,a(D[µΞν]a + da NP A[µ
NδAν]

P ) − 2T(NP )
MΛPGµν

N , (3.19)

where DµΞνa = ∂µΞνa − gAµ
MTMa

bΞνb with TMa
b = −ΘM

cfca
b the gauge group gen-

erator in the adjoint representation of Grigid. With this variation the modified field

strengths (3.17) are invariant under tensor gauge transformations. Under the vector gauge

transformations we derive the following result,

δG−
µν

Λ = −g ΛP TPN
Λ G−

µν
N − g ΛP TΓ

P
Λ (G−

µν −H−
µν)Γ ,

δG−
µνΛ = −g ΛP TPNΛ G−

µν
N − g FΛΣ ΛP TΓ

P
Σ (G−

µν −H−
µν)Γ ,

δ(G−
µν −H−

µν)Λ = g ΛP (TΓ
PΛ − TΓ

P
Σ FΣΛ) (G−

µν −H−
µν)Γ . (3.20)

Hence δGµν
M = −g ΛP TPN

M GN
µν , just as the variation of the abelian field strengths Gµν

M

in the absence of charges, up to terms proportional to ΘΛ,a(Gµν −Hµν)Λ. According to [1],

the latter terms represent a set of field equations. In that case the last equation of (3.20)

expresses the well-known fact that, under a symmetry, field equations transform into field

equations. As a result the gauge algebra on these tensors closes according to (3.12), up to

the same field equations.
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In order that the Lagrangian (2.3) becomes invariant under the vector and tensor gauge

transformations, we have to make a number of changes. First of all, we replace the abelian

field strengths Fµν
Λ in (2.3) by Hµν

Λ, so that

Gµν Λ = i εµνρσ
∂Lvector

∂Hρσ
Λ

. (3.21)

Under general variations of the vector and tensor fields we then obtain the result,

δLvector = −iG+µν
Λ

[

DµδAν
Λ +

1

4
gΘΛa(δBµνa − 2daPQAµ

P δAν
Q)

]

+ h.c. . (3.22)

The reader can check that the Lagrangian (2.3) is indeed invariant under the tensor gauge

transformations. Even when we include the transformations of the scalar and spinor fields,

the Lagrangian is, however, not yet invariant under the vector gauge transformations. For

that it is necessary to introduce the following universal terms to the Lagrangian [1],

Ltop =
1

8
ig εµνρσ ΘΛa Bµν a

(

2 ∂ρAσ Λ + gTMN Λ Aρ
MAσ

N −
1

4
gΘΛ

bBρσ b

)

+
1

3
ig εµνρσTMN Λ Aµ

MAν
N

(

∂ρAσ
Λ +

1

4
gTPQ

ΛAρ
P Aσ

Q
)

+
1

6
ig εµνρσTMN

Λ Aµ
MAν

N
(

∂ρAσΛ +
1

4
gTPQΛAρ

P Aσ
Q
)

. (3.23)

The first term represents a topological coupling of the antisymmetric tensor fields with the

magnetic gauge fields, and the last two terms are a generalization of the Chern-Simons-like

terms (2.34) that we encountered in subsection 2.1. Under variations of the vector and

tensor fields, this Lagrangian varies into (up to total derivative terms)

δLtop = iH+µνΛ DµδAνΛ +
1

4
igH+µν

Λ ΘΛa(δBµνa − 2daPQAµ
P δAν

Q) + h.c. . (3.24)

Under the tensor gauge transformations this variation becomes equal to

(ig H+µνM ΘM
a DµΞνa + h.c.). This expression equals a total derivative by virtue

of (3.9) and the Bianchi identity,

D[µHνρ]
M =

1

3
g ZM,a Hµνρa , (3.25)

where

Hµνρa ≡ 3D[µBνρ] α + 6 dα NP A[µ
N (∂νAρ]

P +
1

3
gT[RS]

P Aν
RAρ]

S) . (3.26)

In the above equations, covariant derivatives are defined by DµHνρ
M = ∂µHνρ

M +

gAµ
P TPN

MHνρ
N and DρBµνa = ∂ρBµνα−gAρ

MTMa
bBµνb. Observe that these derivatives

are not fully covariant in view of (3.20) and (3.19). Fully covariantized expressions were

presented in [3] but are not needed below. The gauge invariance of the total Lagrangian

Lvector +Ltop, will follow upon including the gauge transformations of the matter fields [1].

As we stressed before, the combined gauge invariance of the vector and tensor gauge

fields ensures that the number of physical degrees of freedom will not change by the intro-

duction of the magnetic vector gauge fields and the tensor gauge fields [1]. The combined
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gauge algebra is consistent for the tensor fields upon projection with the embedding tensor,

and as it turns out the action depends only on those field components. If this were not the

case, one would need to introduce new tensor fields of higher rank [15, 16]. Indeed, under

variation of the tensor fields one finds

δLvector + δLtop = −
1

8
ig εµνρσ (G −H)µνΛ ΘΛa δBρσa , (3.27)

which shows that the components of the tensor fields that are projected to zero by multipli-

cation with ΘΛa are not present in the action. Hence those components can be associated

with an additional gauge invariance. A similar situation arises with the magnetic gauge

fields AµΛ. Under variations of the gauge fields Aµ
M one derives,

δLvector + δLtop =
1

2
i εµνρσ DνGρσ

MΩMNδAµ
N , (3.28)

up to a total derivative and up to terms that vanish as a result of the field equation for

Bµνα. Substituting (3.25) we rewrite (3.28) as follows,

δLvector + δLtop =
1

2
i εµνρσ

[

−DνGρσΛ δAµ
Λ +

1

6
gHνρσa ΘΛaδAµΛ

]

. (3.29)

Because the minimal coupling of the gauge fields is always proportional to the embedding

tensor, the full Lagrangian does not change under variations of the magnetic gauge fields

that are projected to zero by the embedding tensor component ΘΛa, up to terms that are

generated by the variations of the tensor fields through the ‘universal’ variation, δBµνa =

2 daPQAµ
P δAν

Q.

Finally, we have been able to identify yet another independent gauge invariance which

acts only on the tensor fields,

ΘΛaδBµνa ∝ ∆ΛΣρ
ρ (G −H)µνΣ − 6∆(ΛΣ)ρ

[ρ (G −H)µν]Σ , (3.30)

where ∆ΛΣµ
ν = ΘΛa∆a

Σµ
ν .

All these gauge symmetries have a role to play in balancing the degrees of freedom.

In [1] a precise accounting of all gauge symmetries was bypassed in the analysis. We note

that not all of them have a bearing on the dynamical modes of the theory as they also act

on fields that play an auxiliary role.

4. Restoring supersymmetry for non-abelian vector multiplets

In this section we show how the supersymmetry can be restored in the presence of a gauging.

In this way we will find the generalizations of the massllike and potential terms of order g

and g2, respectively, which were already exhibited in (2.35) for the case of purely electric

charges. In addition we determine the corresponding changes in the transformation rules.

The supersymmetry transformations that leave the action corresponding to (2.1) invariant,

were given in (2.8).

Introducing electric and magnetic charges, with a uniform gauge coupling constant

g as before, requires a number of universal changes of the Lagrangian that were already
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discussed in the previous section. In Lmatter we have to covariantize the derivatives as

already discussed in subsection 2.2. It is convenient to use the representation (2.40). With

the covariantizations included we thus have

Lmatter = −iΩMN DµXM DµX̄N +
1

4
iΩMN

[

Ω̄iM /DΩi
N − Ω̄i

M /DΩiN
]

. (4.1)

In Lvector we must replace the abelian field strengths Fµν
Λ by the modified field strengths

Hµν
Λ, defined in (3.17). Therefore we replace (2.3) by

Lvector =
1

4
iFΛΣH

−Λ
µν H−Σµν −

1

16
iFΛΣΓΩ̄Λ

i γµνH−Σ
µν ΩΓ

j εij

−
1

256
iN∆Ω

(

F∆ΛΣΩ̄i
ΛγµνΩj

Σεij
)(

FΓΞΩΩ̄k
ΓγµνΩl

Ξεkl
)

+ h.c. . (4.2)

Furthermore one includes the Lagrangians (2.4), (2.5) and (3.23), which remain unaltered.

Up to an extension of (2.35), whose form we will establish in this section, we do not expect

further modifications.

Also the supersymmetry transformation rules acquire a number of modifications, ex-

tending space-time derivatives and field strengths to covariant ones. Furthermore one has

to take account of the presence of the new magnetic gauge fields and the tensor fields.

However, one also needs a few additional terms in the transformation rules, whose form

will be established in due course. For the moment we use the following modified transfor-

mation rules, where we also include the variations of the magnetic gauge fields, which we

denote by δ0,

δ0X
Λ = ǭiΩi

Λ ,

δ0Aµ
Λ = εij ǭiγµΩj

Λ + εij ǭ
iγµΩjΛ ,

δ0AµΛ = FΛΣ εij ǭiγµΩj
Σ + F̄ΛΣ εij ǭ

iγµΩjΣ ,

δ0Ωi
Λ = 2 /DXΛǫi +

1

2
γµνH−

µν
Λεijǫ

j + Yij
Λǫj ,

δ0Yij
Λ = 2ǭ(i /DΩj)

Λ + 2εikεjl ǭ
(k /DΩl)Λ . (4.3)

At this point it is convenient to note that the supersymmetry variations of the scalar,

spinor and vector fields can be written in the form,

δ0X
M = ǭiΩi

M ,

δ0Aµ
M = εij ǭiγµΩj

M + εij ǭ
iγµΩjM ,

δ0Ωi
M = 2 /DXM ǫi +

1

2
γµνG−

µν
Mεijǫ

j + Zij
M ǫj , (4.4)

where the fermions Ωi
M , the field strengths Gµν

M , and the quantities Zij
M were defined

in (2.19), (3.18) and (2.22), respectively.

Most of the cancellations required for demonstrating the supersymmetry of the La-

grangian will still take place when derivatives are replaced by covariant derivatives. A

clear exception arises when dealing with the commutator of two derivatives, because they

will lead to field strengths upon using the Ricci identity. This situation arises for the
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variations of the fermion kinetic term. Furthermore, when establishing supersymmetry

for the more conventional Lagrangians, one makes use of the Bianchi identity for the field

strengths, which no longer applies to the new field strenghts. Of course, the presence of

gauge fields in the covariant derivatives induces new variations. To investigate these issues,

we first determine the supersymmetry variation of Lmatter under the transformations given

above (up to total derivatives),

δ0Lmatter = ig ΩMQTPN
Q

[

DµX̄M XN − X̄M DµXN +
1

2
Ω̄iMγµΩi

N

]

δAµ
P

−
1

2
ig ΩMQTPN

Q
[

X̄M Ω̄i
Nγµνǫi H−

µν
P − h.c.

]

+iΩMN

[

Ω̄iMγνǫ
j εij DµG

−µνN − h.c.
]

, (4.5)

where we suppressed variations that involve neither the gauge coupling constant g nor the

(modified) field strengths. These variations will cancel as before.

It is now easy to verify that the term of order g0 can be combined with the result from

the variation of Lvector + Ltop (c.f. (3.22) and (3.24)),

δ0(Lvector + Ltop) = −iΩMN G−µνM DµδAν
N + h.c. + · · · . (4.6)

Upon using the expressions for GµνΛ and δAµΛ, the combined result thus leads to a total

derivative plus terms proportional to DµFΛΣ and terms cubic in the fermions. These terms

cancel for the abelian theory with an ordinary derivative and the cancellation proceeds

identically when ordinary derivatives are replaced by covariant ones. Note that nowhere

one needs to use the Bianchi identity. This calculation confirms the correctness of the

transformation rule for the magnetic gauge fields. Hence we can now concentrate on the

remaining terms of (4.5), which are the only variations left, up to terms induced by the

variation of the tensor fields which we will need in due course.

To cancel the order-g terms in (4.5) we need to add new terms in the transformation

rules of Ωi
Λ and Yij

Λ. Furthermore new terms to the Lagrangian are required. For the

case of purely electric charges these terms are known and the obvious strategy is to simply

generalize these terms. This leads to the expressions,

δgΩi
Λ = −2g TMN

Λ X̄MXN εij ǫj ,

δgYij
Λ = −4g TMN

Λ
[

Ω̄(i
M ǫk εj)k X̄N − Ω̄kMǫ(i εj)k XN

]

,

Lg = −
1

2
ig ΩMQTPN

Q
[

εij Ω̄i
MΩj

P X̄N − εij Ω̄iMΩjP XN
]

. (4.7)

In the case of purely electric charges the expression for Lg reduces to the first expression

of (2.35) upon using (2.42).

Collecting the new variations proportional to the field strengths that arise as a result

of (4.7), we find, using (3.18), (2.45) and (2.39),

δgLvector + δ0Lg =
1

2
ig ΩMQTPN

Q X̄M Ω̄i
Nγµνǫi G−

µν
P + h.c. . (4.8)
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This term is almost identical to the second term of (4.5) except that is proportional to

Gµν
M rather than to Hµν

M . However, the combination of these two terms is cancelled by

assigning the following variation to the tensor fields,

δBµν a = −2taM
P ΩPN

(

A[µ
M δAν]

N − X̄M Ω̄i
Nγµνǫi − XM Ω̄iNγµνǫi

)

. (4.9)

At this point one can verify that all other supersymmetry variations linear in the

gauge coupling constant g vanish. Here one makes use of the various results derived in

subsection 2.2, and in particular of (2.43). What remains are the order-g2 interactions

induced by the order-g transformations of the spinors, which can be written as,

δgΩi
M = −2g TNP

M X̄NXP εij ǫj . (4.10)

The order-g2 variation follows from δgLg, and can be written proportional to the super-

symmetry variation δXM given in (4.4),

δgLg = −2ig2 ΩMQTNP
Q X̄P δX [M TRS

N ] X̄RXS + h.c. . (4.11)

Using the Lie algebra relation (3.5), as well as the relation (2.43), we can write this in a

form that can be integrated. This reveals that these variations can be cancelled by the

variation of a scalar potential, corresponding to

Lg2 = ig2 ΩMN TPQ
MXP X̄Q TRS

NX̄RXS . (4.12)

This expression reduces to (2.35) for purely electric gaugings upon using (2.42). Observe

that the charges TΛΣΓ do not contribute to (4.12), as is well known from previous construc-

tions.

Before closing this section we determine the supersymmetry algebra by evaluating the

supersymmetry commutator on XM and Aµ
M (bearing in mind that the magnetic gauge

fields AµΛ can be contracted with ΘΛa without loss of generality). The result for the

commuatator takes the following form,

[δ(ǫ1), δ(ǫ2)] = 2(ǭ2
iγµǫ1i + ǭ2iγ

µǫ1
i)Dµ + δ(Λ) + δ(Ξ) , (4.13)

where the first term corresponds to a covariant translation (covariant with respect to vector

and tensor gauge transformations), and the second and third terms denote additional vector

and tensor gauge transformations with parameters,

ΛM = 4 (X̄M ǭ2
iǫ1

j εij + XM ǭ2iǫ1j εij) ,

Ξµa = −2 daNP (Aµ
NAν

P + 2 ηµνX̄NXP )(ǭ2
iγνǫ1i + ǭ2iγ

νǫ1
i) . (4.14)

Here we made use of (2.37) to close the commutator on XM . For closing the commutator

on Aµ
M we used the field equations for Yij

M (implying that Zij
M is pseudo-real), and the

field equation for Bµνa.

This concludes the derivation of supersymmetric vector multiplet Lagrangians with

electric and magnetic gauge charges. In the following section we will consider the coupling

to matter by introducing hypermultiplets. This will lead to additional contributions to the

scalar potential.
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5. Hypermultiplets

In this section we give a brief description of hypermultiplets and their gaugings, following

the framework of [17, 18]. The nH hypermultiplets are described by 4nH real scalars φA,

2nH positive-chirality spinors ζ ᾱ and 2nH negative-chirality spinors ζα. Hence target-space

indices A,B, . . . take values 1, 2, . . . , 4nH, and the indices α, β, . . . and ᾱ, β̄, . . . run from 1

to 2nH. The chiral and antichiral spinors are related by complex conjugation (so that we

have 2nH Majorana spinors) under which indices are converted according to α ↔ ᾱ.

The supersymmetry transformations take the form,

δ0φ
A = 2(γA

iᾱ ǭiζ ᾱ + γ̄Ai
α ǭiζ

α) ,

δ0ζ
α = V α

A i /∂φAǫi − δφA ΓA
α
β ζβ ,

δ0ζ
ᾱ = V̄ iᾱ

A /∂φAǫi − δφA Γ̄A
ᾱ
β̄ ζ β̄ , (5.1)

where δ0 indicates that the variations refer to zero gauge coupling constant g. Here ΓA
α

β

and ΓA
ᾱ

β̄ are the connections associated with field-dependent reparametrizations of the

fermions of the form ζα → Sα
β(φ) ζβ , and ζ ᾱ → S̄ᾱ

β̄(φ) ζ β̄ . Naturally these reparametriza-

tions act on all quantities carrying indices α and ᾱ. The curvatures RAB
α

β and RAB
ᾱ

β̄

associated with these connections take their values in sp(nH) ∼= usp(2nH; C). The quantities

γA and VA are (4nH)× (4nH) complex matrices which play the role of the quaternionic (in-

verse) vielbeine of the target space. They satisfy a pseudo-reality condition specified below.

The Lagrangian takes the following form

L0 = −
1

2
gAB ∂µφA∂µφB − Gᾱβ(ζ̄ ᾱ /Dζβ + ζ̄β /Dζ ᾱ) −

1

4
Wᾱβγ̄δ ζ̄ ᾱγµζβ ζ̄ γ̄γµζδ , (5.2)

with covariant derivatives

Dµζα = ∂µζα + ∂µφA ΓA
α
β ζβ , Dµζ ᾱ = ∂µζ ᾱ + ∂µφA Γ̄A

ᾱ
β̄ ζ β̄ . (5.3)

The tensor Wᾱβγ̄δ is related to the Riemann curvature RABCD associated with the target

space metric gAB, as well as to the sp(nH) curvatures mentioned above. Observe that the

Lagrangian is invariant under the U(1) R-symmetry group which acts by chiral transforma-

tions on the fermion fields. The SU(2) R-symmetry can only be realized when the target

space has an SU(2) isometry.

The target-space metric gAB , the tensors γA, VA and the fermionic hermitean met-

ric Gᾱβ (i.e., satisfying (Gᾱβ)∗ = Gβ̄α) are all covariantly constant with respect to the

Christoffel connection and the connections ΓA
α
β and ΓA

ᾱ
β̄. Furthermore we note the fol-

lowing relations,

γ̄j
Aα V α

Bi = γBiᾱ V̄ jᾱ
A = −γ̄j

Bα V α
iA + δj

i gAB ,

V̄ iᾱ
A γA

jβ̄
= δi

j δᾱ
β̄

,

gAB V α
Ai V β

Bj = εij Ωαβ , gAB γA
iᾱ γB

jβ̄
= εij Ωᾱβ̄ ,

εij Ωᾱβ̄ V̄ jβ̄
A = gAB γB

iᾱ = Gᾱβ V β
A i ,

γAiᾱ V̄ jᾱ
B = εikJ

kj
AB +

1

2
gAB δj

i ,

JAB
ijγB

ᾱk = −δ
(i
k εj)l γAᾱl . (5.4)
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Here Ωαβ and Ωᾱβ̄ are skew-symmetric covariantly constant tensors (satisfying Ωᾱβ̄Ω̄β̄γ̄ =

−δᾱ
γ̄), and the J ij

AB are three complex structures generating the algebra of quaternions.

The existence of the complex structures implies that the target space is hyperkähler.

The equivalence transformations of the fermions and the target-space diffeomorphisms

do not constitute invariances of the theory, unless they leave the metric gAB and the

Sp(nH)× Sp(1) one-form V α
i (and thus the related geometric quantities) invariant. There-

fore invariances are related to isometries of the hyperkähler space. A subset of them can

be elevated to a group of local (i.e. space-time-dependent) transformations, which require

a coupling to corresponding vector multiplets. Such gauged isometries have been studied

in the literature [19 – 24] but only for electric charges.

Infinitesimal isometries are characterized by Killing vectors and the ones associated

to local transformations will be labeled by the same index M that labels the electric and

magnetic gauge fields of the previous sections. In principle, the gauged isometries constitute

a subgroup of the full group of isometries, defined by the embedding tensor. Hence the

corresponding Killing vectors are proportional to the embedding matrix, kA
M = ΘM

a kA
a,

and (3.9) implies,

ZM,a kA
M = 0 . (5.5)

Without gauge interactions, the hypermultiplets do not couple to the vector multiplets, so

that the full group of invariances factorizes into separate invariance groups of the vector

multiplet Lagrangian and of the hypermultiplet Lagrangian. The index a refers to all these

symmetries, and therefore kA
a will vanish whenever the index a refers to a generator acting

exclusively on the vector multiplets.

The local gauge group is thus generated by the Killing vectors kA
M (φ) =

(kA
Λ(φ), kAΛ(φ)), with parameters ΛM . Under infinitesimal transformations we have

δφA = g ΛMkA
M (φ) , (5.6)

where g is the coupling constant and the kA
M (φ) satisfy the Killing equation,

DAkBM + DBkAM = 0 . (5.7)

Higher derivatives of Killing vectors are not independent, as is shown by

DADBkCM = RBCAE k E
M . (5.8)

The isometries close under commutation,

kB
M∂BkA

N − kB
N∂BkA

M = TMN
P kA

P , (5.9)

where, as before, the antisymmetry in [MN ] on the right-hand side is ensured by (5.5).

The invariances associated with the target space isometries act on the fermions by field

dependent matrices, which satify the relation

(tM )αβ V β
Ai = DAkB

M V α
Bi , (5.10)
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leading to

(tM )αβ =
1

2
V α

Ai γ̄Bi
β DBkA

M . (5.11)

The result (5.10) was derived by requiring that the tensor V α
Ai is invariant under the isome-

tries, up to a rotation on the indices α. The invariance implies that target-space scalars

satisfy algebraic identities such as

t̄M
γ̄
ᾱ Gγ̄β + tM

γ
β Gᾱγ = tM

γ̄
[ᾱ Ωβ̄]γ̄ = 0 , (5.12)

which establishes that the matrices tM
α

β take values in sp(nH). From (5.9) and (5.8), one

may derive

DAtM
α
β = RAB

α
β kB

M , (5.13)

for any infinitesimal isometry. From the group property of the isometries it follows that

the matrices tM satisfy the commutation relations,

[ tM , tN ]αβ = −TMN
P (tP )αβ + kA

M kB
N RAB

α
β , (5.14)

which takes values in sp(nH). This result is consistent with the Jacobi identity.

The previous results imply that the complex structures J ij
AB are invariant under the

isometries,

kC
M ∂CJ ij

AB − 2∂[AkC
M J ij

B]C = 0 , (5.15)

implying that the isometries are tri-holomorphic. From (5.15) one shows that

∂A(J ij
BC kC

M ) − ∂B(J ij
AC kC

M ) = 0, so that, locally, one can associate three Killing po-

tentials (or moment maps) µij
M to every Killing vector, according to

∂Aµij
M = J ij

AB kB
M , (5.16)

which determines µij
M up to a constant. These constants correspond to Fayet-Iliopoulos

terms. Up to such constants one derives the equivariance condition,

J ij
AB kA

M kB
N = TMN

P µij
P , (5.17)

which implies that the Killing potentials transform covariantly under the isometries,

δµij
M = ΛN kA

N ∂Aµij
M = ΛN TNM

P µij
P . (5.18)

Subsequently we consider the consequences of realizing the isometry (sub)group gen-

erated by the kA
M as a local gauge group. The latter acts on the hypermultiplet fields in

the following way,

δφ = g ΛM kA
M , δζα = g ΛM tM

α
β ζβ − δφAΓA

α
β ζβ , (5.19)

where the parameters ΛM are functions of xµ. The relevant covariant derivatives are equal

to,

DµφA = ∂µφA − gAµ
M kA

M , Dµζα = ∂µζα + ∂µφA ΓA
α
β ζβ − gAµ

M tM
α
β ζβ . (5.20)
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These covariant derivatives must be substituted into the transformation rules (5.1) and the

Lagrangian (5.2). The covariance of Dµζα,

δDµζα = g ΛM tM
α
β Dµζβ − δφAΓA

α
β Dµζβ . (5.21)

follows from (5.13) and (5.14).

Just as for the vector multiplets, the introduction of the gauge covariant derivatives to

the Lagrangian breaks the supersymmetry of the Lagrangian. To restore supersymmetry

we follow the same procedure as in section 4. But in this case the situation is somewhat

simpler because the electric and magnetic gauge fields couple to standard hypermultiplet

isometries. This means that the initial results will coincide with those obtained for electric

gaugings.

Let us first present the variations of the Lagrangian (5.2) with the proper gauge co-

variantizations and determine the supersymmetry variation linear in the gauge coupling

constant g and linear in the fermion fields,

δL0 = g kAM

[

γA
iᾱ ζ̄ ᾱγµνǫiF−

µν
M + εij Ω̄i

M /DφAǫj + h.c.
]

. (5.22)

The first term originates from the fact that the commutator of two covariant derivatives

acquires an extra field strength in the presence of the gauging, whereas the second term

originates from the variation of the gauge fields in the covariant derivatives of the scalars.

The first term can be cancelled by a supersymmetry variation of the following new term,

L(1)
g = 2g kAM

[

γ̄Ai
α εij ζ̄αΩjM + γA

iᾱεij ζ̄ ᾱΩj
M

]

. (5.23)

The variations of this term proportional to the field strength Gµν
M cancel against the term

proportional to Hµν
M (the field strength Fµν

M can be replaced by Hµν
M by virtue of (5.5))

by adding a new term to the variation (4.9) of the tensor fields Bµνa,

δBµνa = −4ikA
a

[

γAiᾱ ζ̄ ᾱγµνǫ
i − γ̄i

Aα ζ̄αγµνǫi

]

. (5.24)

Another term in the variation of (5.23) is proportional to XM and its complex con-

jugate. Their cancellation requires the following extra variations of the hypermultiplet

spinors,

δζα = 2gXM kA
MV α

Ai ε
ijǫj , δζ ᾱ = 2gX̄M kA

M V̄ ᾱi
A εijǫ

j , (5.25)

and an extra term in the Lagrangian equal to

L(2)
g = 2g

[

X̄M tM
γ
α Ω̄βγ ζ̄αζβ + XM tM

γ̄
ᾱ Ωβ̄γ̄ ζ̄ ᾱζ β̄

]

. (5.26)

The remaining variations then take the following form.

δL0 + δL(1)
g + δL(2)

g = −2g ∂Aµij
M Ω̄i

M /DφAǫj − 2g ∂AµijM Ω̄iM /DφAǫj

− 2g
[

∂AµijΛ Y ijΛ + ∂Aµij
Λ F̄ΛΣ Y ijΣ

]

γ̄Ak
α ǭkζ

α

− 2g
[

∂AµijΛ Y ijΛ + ∂Aµij
Λ FΛΣ Y ijΣ

]

γA
kᾱ ǭkζ ᾱ , (5.27)

where we restricted ourselves to variations linear in the fermion fields and linear in g.
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To cancel these variations we must include the following new term to the Lagrangian,

L(3)
g = g Y ijΛ

[

µijΛ+
1

2
(FΛΣ + F̄ΛΣ)µij

Σ

]

−
1

4
g

[

FΛΣΓ µijΛ Ω̄i
ΣΩj

Γ + F̄ΛΣΓ µij
Λ Ω̄iΣΩjΓ

]

,

(5.28)

as well as assign new variations of the fields Ωi
Λ and Y Λ

ij of the vector multiplet,

δgΩi
Λ = 2 ig µij

Λǫj ,

δgYij
Λ = 4 ig kAΛ

[

εk(i γj)ᾱAǭkζ ᾱ + εk(i ǭj)ζ
α γ̄k

αA

]

. (5.29)

This completes the discussion of all the variations linear in g and in the fermion fields. The

result remains valid for the cubic fermion variations as well. However, new variations arise

in second order in g, by the order-g variations in the order-g terms in the Lagrangian. Here

we have to consider the combined results for the vector multiplets and the hypermultiplets.

All these variations cancel against the variation of a scalar potential, corresponding to

Lg2 = −2g2kA
M kB

N gAB XM X̄N −
1

2
g2 NΛΣ µij

Λ µijΣ . (5.30)

6. Off-shell structure

In the absence of magnetic charges, the vector multiplets constitute off-shell representations

of the N = 2 supersymmetry algebra and the tensor fields decouple from the theory.

However, on the hypermultiplets the supersymmetry algebra is only realized up to fermionic

field equations. The situation changes crucially when magnetic charges are present. In

that case there are no longer any off-shell multiplets and the supersymmetry algebra is

only realized when the fields satisfy the field equations of the hypermultiplet spinors and

of the fields AµΛ, Yij
Λ and Bµνa. In this section we discuss how the off-shell closure can

be regained for the vector multiplets when magnetic charges are switched on. In this

discussion the hypermultiplet fields play only an ancillary role.

We start by introducing 2n independent vector multiplets, associated with the electric

and magnetic gauge fields, Aµ
Λ and AµΛ, and collectively denoted by Aµ

M . In the absence

of charges, these fields are subject to the standard off-shell transformation rules,

δXM = ǭiΩi
M ,

δAµ
M = εij ǭiγµΩj

M + εij ǭ
iγµΩjM ,

δΩi
M = 2/∂XM ǫi +

1

2
γµνF−

µν
Mεijǫ

j + Yij
M ǫj ,

δYij
M = 2ǭ(i/∂Ωj)

M + 2εikεjl ǭ
(k/∂Ωl)M . (6.1)

We stress once more that, unlike previously, these 2n vector multiplets are independent.

In due course we shall see how to make contact with the previous description.

The tensor gauge fields Bµνa are assigned to off-shell tensor multiplets. Just as before,

the index a labels the independent continuous symmetries of the theory. These multi-

plets consist of scalar fields Lij
a, positive chirality spinors ϕi

a (and their negative chirality
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conjugates ϕia), tensor gauge fields Bµνa, and complex scalars Ga. However, for reasons

explained below, we complexify the scalars Lij
a by introducing complex scalars P ij

a. These

fields transform as vectors under the SU(2) R-symmetry, and their pseudo-real parts are

proportional to the fields Lij
a,

Lij
a = P ij

a + εikεjlPkla . (6.2)

The consistency of this extension is ensured by introducing, at the same time, the local

gauge transformations, P ij
a(x) → P ij

a(x) + iξij
a(x), where the gauge parameters ξij

a are

pseudo-real, so that ξija = εikεjl ξ
kl

a. In terms of the gauge invariant scalars Lij
a we will

obtain the more conventional formulation of the tensor multiplet.2 The supersymmetry

variations of the tensor multiplets are now as follows,

δPija = 2 εikεjl ǭ
(kϕl)

a ,

δBµνa =
1

2
iǭiγµνϕj

a εij −
1

2
iǭiγµνϕja εij ,

δϕi
a = /∂(P ij

a + εikεjlPkla) ǫj + 2 εij /Haǫj − Gaǫ
i ,

δGa = −2 ǭi/∂ϕi
a , (6.3)

where Hµ
a = 1

2 iεµνρσ∂νBρσa. Note that the tensor multiplet fields are thus subject to two

local gauge invariances,

Bµνa(x) → Bµνa(x) + 2 ∂[µΞν]a(x) , Pija(x) → Pija(x) + iξija(x) . (6.4)

Both these transformations appear in the supersymmetry commutation relation, which

takes the form,

[δ(ǫ1), δ(ǫ2)] = 2(ǭ2
iγµǫ1i + ǭ2iγ

µǫ1
i)Dµ + δ(Ξ) + δ(ξ) , (6.5)

where the first term denotes the translation (covariantized with Aµ
M and Bµνa depen-

dent terms) and the second and third one correspond to the transformations (6.4) with

parameters,

Ξµa = −i (ǭ2
iγµǫ1j + ǭ2jγµǫ1

i)(Pikaε
kj + εikP

kj
a) ,

ξija = 4i (ǭ2
kγµǫ1(i + ǭ2(iγµǫ1

k) εj)k Hµ
a + 2i (ǭ2

kγµǫ1(i + ǭ2(iγ
µǫ1

k) ∂µPj)ka

− 2i (ǭ2
(kγµǫ1m + ǭ2mγµǫ1

(k) εikεjl ∂µP l)m
a . (6.6)

Now we return to the vector multiplets with a deformation parametrized by the em-

bedding tensor that couples the vector multiplets to a tensor multiplet background. The

deformation is induced by changing the field strength tensors and the auxiliary fields in

the supersymmetry transformation for Ωi by

Fµν
M −→ Hµν

M = Fµν
M + gZM,aBµνa ,

Yij
M −→ Yij

M = Yij
M − igZM,aPija . (6.7)

2We use the notation of [25], with the exception of the tensor field which is rescaled by a factor 2. Note

that the precise conventions are crucial for making contact with the tensor coupling to the vector multiplets,

as employed in this paper (in particular, note (6.7)).
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Observe that Yij
M is no longer pseudo-real. Since we insist on the fact that Hµν

M and

Yij
M remain gauge invariant with respect to (6.4) we assume the following transformation

rules for Aµ
M and Yij

M ,

δAµ
M = −gZM,aΞµa , δYij

M = −gZM,aξija . (6.8)

Subsequently we evaluate the supersymmetry commutator on the vector multiplet fields

acting on XM , Aµ
M and Yij

M . For the moment, we assume non-trivial gaugings, gener-

ated by the same matrices TMN
P as before. We thus include order-g corrections to the

supersymmetry variations of Ωi
M and Yij

M . However, the closure of the supersymmetry

commutator is non-trivial in view of the deformation (6.7) and the fact that the TMN
P do

not satisfy the Jacobi identity. This will lead to new contributions to the supersymmetry

commutator proportional to the tensor ZM,a. The result of an explicit calculation shows

that these contributions can all be absorbed in the transformations parametrized by Ξµa

and ξija,

[δ(ǫ1), δ(ǫ2)] = 2(ǭ2
iγµǫ1i + ǭ2iγ

µǫ1
i)Dµ + δ(Λ) + δ(Ξ) + δ(ξ) , (6.9)

where the first term corresponds to a covariant translation (covariant with respect to vector

and tensor gauge transformations). The corresponding parameters are equal to

ΛM =4 (X̄M ǭ2
iǫ1

j εij + XM ǭ2iǫ1j εij) ,

Ξµa=−2 daNP (Aµ
NAν

P + 2 ηµνX̄NXP )(ǭ2
iγνǫ1i + ǭ2iγ

νǫ1
i)

− i (ǭ2
iγµǫ1j + ǭ2jγµǫ1

i)(Pikaε
kj + εikP

kj
a) ,

ξija=4 daNP [XN
↔

Dµ X̄P − Ω̄l
NγµΩlP εk(i(ǭ2

kγµǫ1j) + ǭ2j)γ
µǫ1

k)

− 4 daNP εkl ǭ2kǫ1l (2XNYij
P − Ω̄i

NΩj
P )

− 4 daNP εkl ǭ2
kǫ1

l (2 X̄NY ijP − εimεjnΩ̄mNΩnP )

+ 4i (ǭ2
kγµǫ1(i + ǭ2(iγµǫ1

k) εj)k Hµ
a

+ 2i (ǭ2
kγµǫ1(i + ǭ2(iγ

µǫ1
k) DµPj)ka

− 2i (ǭ2
(kγµǫ1m + ǭ2mγµǫ1

(k) εikεjl DµP l)m
a , (6.10)

where use was made of the Bianchi identity (3.25). The important observation is that all

the terms referring to the tensor multiplet fields in (6.10) are in precise agreement (up to

the covariantizations) with (6.6). The remaining terms in ΛM and Ξµa have already been

found before in (4.14), while those in ξija are new.

What remains is to verify the closure on the fermion fields Ωi
M . In order to do so,

we must first extend the tensor multiplets by incorporating non-abelian gauge couplings

in (6.3). However, to keep matters simple, we will suppress non-abelian gauge interactions

here and henceforth. In that case (6.3) is complete and the closure can be verified directly.

As expected, the only possible terms that could affect the closure are the terms generated

by the deformation (6.7). It is then a relatively straightforward calculation to verify that

these terms cancel, so that we have indeed established the existence of an off-shell repre-

sentation with both electric and magnetic charges present. Of course, these charges are

then exclusively carried by hypermultiplets in the way that we have described before.
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Let us now turn to the Lagrangian to see how the on-shell results of this paper can

be obtained. The construction starts from the observation that, in the absence of the

deformations (6.7), there exists a supersymmetric coupling between tensor and vector su-

permultiplets. For instance, such a coupling between the magnetic vector supermultiplets

coupling and the tensor multiplets is described by the following Lagrangian,

L ∝ ΘΛa

{

GaXΛ + ḠaX̄Λ −
1

2
(PijaY

ij
Λ + P ij

aYijΛ)

+ Ω̄i
Λϕia + Ω̄iΛϕi

a −
1

2
i εµνρσBµνaFρσΛ

}

. (6.11)

In this Lagrangian the tensor multiplet fields act as Lagrange multipliers which would

put the magnetic vector multiplet fields to zero. Instead, the on-shell theory that we

are attempting to construct should lead to certain relations between the magnetic vector

multiplet fields in terms of the other fields. Moreover, the Lagrangian (6.11) does not apply

in the presence of the deformations. This suggests to make a number of modifications

induced by the following shifts,

XΛ −→ XΛ − FΛ(X) ,

ΩiΛ −→ ΩiΛ − FΛΣ(X)Ωi
Σ ,

FµνΛ −→ FµνΛ −
1

4
gΘΛ

aBµνa ,

YijΛ −→ YijΛ +
1

4
ig ΘΛ

aPija , (6.12)

where F (X) is the usual holomorphic function of the scalars XΛ belonging to the electric

vector multiplets. Note that the substitutions for FµνΛ and YijΛ coincide with the expres-

sions for HµνΛ and YijΛ up to a factor of 1
2 . This is related to the fact that the fields Bµνa

and Pija will appear quadratically in the Lagrangian upon performing the shifts (6.12). We

note that the substitution for YijΛ is ambiguous in view of its pseudo-reality, while YijΛ

and Y ij
Λ are assumed to acquire different shifts. Ultimately, the justification of these sub-

stitutions is, of course, given by the supersymmetry invariance of the resulting Lagrangian.

Hence without further ado we now present the following extension of (6.11),

L = −
1

4
g ΘΛa

{

Ga[XΛ − FΛ(X)] + Ḡa[X̄Λ − F̄Λ(X̄)]

−
1

2
εikεjlPija

[

YklΛ +
1

4
igΘΛ

bPklb

]

−
1

2
εikεjlP

ij
a

[

Y kl
Λ −

1

4
igΘΛ

bP kl
b

]

+ ϕ̄ia

[

Ωi
Λ − F̄ΛΣΩiΣ

]

+ ϕ̄i
a

[

ΩiΛ − FΛΣΩi
Σ
]

−
1

2
i εµνρσBµνa

[

FρσΛ −
1

4
gΘΛ

bBρσb

]}

, (6.13)

which is invariant under the transformations (6.4), (6.8). This Lagrangian is the off-shell

extension (in the abelian case) of (3.23), in view of the fact that the last term that con-

tains the tensor gauge fields is identical. Clearly, the fields Ga and ϕi
a act as Lagrange

multipliers, which determine the fields XΛ and ΩiΛ in the same way as before. The fields

P ij
a can be integrated out, just as the tensor fields Bµνa.
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The Lagrangian (6.13) must be combined with the Lagrangian (2.1) for the electric

vector supermultiplets, in which we have to introduce the deformations (6.7). In the absence

of magnetic charges (i.e. ΘΛa = 0), we thus obtain the standard result for electric charges.

In the presence of magnetic charges, the combined action leads to the field equa-

tion (3.27) for the tensor gauge field. For the field equation associated with Pij
a, we should

first exhibit the deformation of the Lagrangian (2.5) that involves the auxiliary fields Yij
Λ.

The correct way to introduce the deformation reads as follows,

LY = −
1

8
iεikεjl

[

FΛΣ Yij
ΛYkl

Σ − FΛΓΩ Yij
ΛΩ̄k

ΓΩl
Ω
]

+
1

8
iεikεjl

[

F̄ΛΣ Y ijΛYklΣ − F̄ΛΓΩ Y ijΛΩ̄kΓΩlΩ
]

−
1

32
NΛΣ

[

εikεjlFΛΓΩ Ω̄i
ΓΩj

Ω FΣΞ∆ Ω̄k
ΞΩl

∆ + εikεjlF̄ΛΓΩ Ω̄kΓΩlΩ F̄ΣΞ∆ Ω̄iΞΩj∆
]

+
1

16
NΛΣ FΛΓΩ Ω̄i

ΓΩj
Ω F̄ΣΞ∆ Ω̄iΞΩj∆ . (6.14)

Here we observe that the structure of this expression is quite similar to the structure

of (2.3), with the exception of the last term in the expression above which is separately

consistent with respect to electric/magnetic duality. Actually this term cancels exactly

against the last term of (2.4). The result of the field equations associated with the fields

PijΛ can now be determined and yields,

ΘΛa

(

YijΛ −

[

FΛΣYij
Σ −

1

2
FΛΣΓΩ̄i

ΣΩj
Γ

])

= 0 . (6.15)

This equation is in close analogy with the field equation (3.27) for the tensor gauge field.

To make contact with the on-shell results derived in this paper, we need the terms in-

duced by the gauging for the hypermultiplet Lagrangian. Starting with the 2n independent

vector supermultiplets, the terms of order g and g2 will take the form,

Lg+g2

∣

∣

∣

hypermultiplet
= +2g kAM

[

γ̄Ai
α εij ζ̄αΩjM + γA

iᾱεij ζ̄ ᾱΩj
M

]

+ 2g
[

X̄M tM
γ
α Ω̄βγ ζ̄αζβ + XM tM

γ̄
ᾱ Ωβ̄γ̄ ζ̄ ᾱζ β̄

]

+ g Y ijMµijM − 2g2kA
M kB

N gAB XM X̄N , (6.16)

where we include both electric and magnetic Killing potentials. In principle, one should

modify this result by introducing the deformation (6.7). However, the effect of the deforma-

tion drops out in view of the fact that ZM,aµijM = 0, and the hypermultiplet Lagrangian

is separately supersymmetric in the presence of the gauging.

Subsequently we note that the field YijΛ appears linearly in the combined Lagrangian,

so that it acts as a Lagrange multiplier. Imposing, at the same time, the gauge condition

that Pija is pesudo-real, we obtain the result,

ΘΛa Pija = −4µij
Λ . (6.17)

This introduces the correct supersymmetry variation of the fermion field Ωi
Λ, because

Yij
Λ = Yij

Λ +2giµij
Λ. Substituting this last expression into (6.14) leads then to additional

– 28 –



J
H
E
P
0
8
(
2
0
0
7
)
0
6
4

terms in (6.16) linear and quadratic in the magnetic Killing potentials µij
Λ. These terms

coincide with the corresponding terms given in (5.28) and (5.30).

It should be interesting to further explore the properties and possible applications of

this off-shell formulation. An obvious question concerns the existence of a non-abelian

version.

7. Summary and discussion

In this paper we presented Lagrangians and supersymmetry transformations for a general

supersymmetric system of vector multiplets and hypermultiplets in the presence of both

electric and magnetic charges. The results were verified to all orders and are consistent

with results known in the literature that are based on purely electric charges. The closure

of the supersymmetry algebra, is realized on shell, but in the previous section we have

indicated how an off-shell representation can be defined consisting of vector and tensor

supermultiplets.

Before discussing possible implications of these results, let us first summarize the terms

induced by the gauging. We first present the combined supersymmetry variations. First

of all, we have the original transformations in the absence of the gauging, where space-

time derivatives are replaced by gauge-covariant derivatives and where the abelian field

strengths Fµν
Λ are replaced by the covariant field strengths Hµν

Λ. We will not repeat the

corresponding expressions here, but we present the other terms in the transformation rules

that are induced by the gauging. They read as follows,

δgΩi
Λ=−2g TNP

Λ X̄NXP εij ǫj + 2 ig µij
Λǫj ,

δgζ
α=2 gXM kA

MV α
Ai ε

ijǫj ,

δgYij
Λ=−4gTMN

Λ
[

Ω̄(i
M ǫkεj)kX̄

N−Ω̄kMǫ(iεj)kX
N

]

+4igkAΛ
[

εk(iγj)ᾱAǭkζ ᾱ+εk(iǭj)ζ
αγ̄k

αA

]

,

δBµνa=−2taM
P ΩPN

(

A[µ
M δAν]

N − X̄M Ω̄i
Nγµνǫi − XM Ω̄iNγµνǫi

)

− 4ikA
a

[

γAiᾱ ζ̄ ᾱγµνǫi − γ̄i
Aα ζ̄αγµνǫi

]

. (7.1)

Likewise we will not repeat the original Lagrangians (2.1) and (5.2) for the vector

multiplets and hypermultiplets, respectively, modified by the replacement of space-time

derivatives by gauge-covariant ones, and field strengths by the covariant field strengths

Hµν
Λ. The Lagrangian (3.23) remains unchanged. The additional terms induced by the

gauging that are linear in g take the following form,

Lg = −
1

2
ig ΩMQTPN

Q
[

εij Ω̄i
MΩj

P X̄N − εij Ω̄iMΩjP XN
]

−
1

4
g

[

FΛΣΓ µijΛ Ω̄i
ΣΩj

Γ + F̄ΛΣΓ µij
Λ Ω̄iΣΩjΓ

]

,

+ 2g kAM

[

γ̄Ai
α εij ζ̄αΩjM + γA

iᾱεij ζ̄ ᾱΩj
M

]

+ 2g
[

X̄M tM
γ
α Ω̄βγ ζ̄αζβ + XM tM

γ̄
ᾱ Ωβ̄γ̄ ζ̄ ᾱζ β̄

]

+ g Y ijΛ

[

µijΛ +
1

2
(FΛΣ + F̄ΛΣ)µij

Σ

]

. (7.2)
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The terms of order g2 correspond to a scalar potential proportional to g2 and are given by

Lg2 = ig2 ΩMN TPQ
MXP X̄Q TRS

NX̄RXS

− 2g2kA
M kB

N gAB XMX̄N −
1

2
g2 NΛΣ µij

Λ µijΣ . (7.3)

Eliminating the auxiliary fields Yij
Λ gives rise to the following expressions. The terms

linear in g read,

Lg = −
1

2
ig ΩMQTPN

Q
[

εij Ω̄i
MΩj

P X̄N − εij Ω̄iMΩjP XN
]

+ 2g kAM

[

γ̄Ai
α εij ζ̄αΩjM + γA

iᾱεij ζ̄ ᾱΩj
M

]

+ 2g
[

X̄M tM
γ
α Ω̄βγ ζ̄αζβ + XM tM

γ̄
ᾱ Ωβ̄γ̄ ζ̄ ᾱζ β̄

]

−
1

2
igNΛΣ FΣΓΞ Ω̄i

ΓΩj
Ξ

[

µij
Λ + F̄Λ∆ µij∆

]

+
1

2
igNΛΣ F̄ΣΓΞ ΩiΓΩjΞ

[

µijΛ + FΛ∆ µij
∆

]

. (7.4)

The resulting potential, which is proportional to g2, follows from

Lg2 = ig2 ΩMN TPQ
MXP X̄Q TRS

NX̄RXS − 2g2kA
M kB

N gAB XMX̄N

− 2 g2
[

µij
Λ + FΛΓ µijΓ

]

NΛΣ
[

µijΣ + F̄ΣΞ µij
Ξ
]

. (7.5)

Provided the embedding tensor is treated as a spurionic quantity, both these expressions

are invariant under electric/magnetic duality transformations.

The same phenomenon can be seen in the supersymmetry variation of the vector

multiplet fermions, upon integrating out the fields Yij
Λ. Up to terms quadratic in the

fermions, this variation reads,

δΩi
Λ = 2 /DXΛǫi +

1

2
γµνH−

µν
Λεijǫ

j

− 2g TNP
Λ X̄NXP εij ǫj − 4 gNΛΣ(µijΣ + F̄ΣΓ µij

Γ)ǫj , (7.6)

where the term of order g is consistent with electric/magnetic duality.

The above results have many applications. A relatively simple one concerns the Fayet-

Iliopoulos terms, which are the integration constants of the Killing potentials µij
M . This

enables us to truncate the above expressions by setting the embedding tensor to zero, while

still retaining the constants gµij
M . In that case all effects of the gauging are suppressed

and one is left with a potential accompanied by fermionic masslike terms,

LFI = −
1

2
igNΛΣ FΣΓΞ Ω̄i

ΓΩj
Ξ

[

µij
Λ + F̄Λ∆ µij∆

]

+
1

2
igNΛΣ F̄ΣΓΞ ΩiΓΩjΞ

[

µijΛ + FΛ∆ µij
∆

]

− 2 g2
[

µij
Λ + FΛΓ µijΓ

]

NΛΣ
[

µijΣ + F̄ΣΞ µij
Ξ
]

. (7.7)

The above expression transforms as a function under electric/magnetic duality provided

that the µij
M are treated as spurionic quantities transforming as a 2n-vector under
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Sp(2n, R). To show this one makes use of the transformation rules (2.24) for the second

and third derivatives of the holomorphic function F (X). The last term in (7.7) corresponds

to minus the potential, which is positive definite (assuming positive NΛΣ). The Lagrangian

is a generalization of the Lagrangian presented in [26], where it was also shown how the

potential can lead to spontaneous partial supersymmetry breaking when µij
Λ 6= 0. Note

that the hypermultiplets play only an ancillary role here, as they decouple from the vector

multiplets.

Most of the possible applications can be found in the context of supergravity, where

they will be useful for constructing low-energy effective actions associated with string com-

pactifications in the presence of fluxes (see, e.g. [27]). In principle it is straightforward to

extend our results to the case of local supersymmetry. The target space of the vector multi-

plets should then be restriced to a special Kähler cone (this requires that F (X) be a homo-

geneous function of second degree), and the hypermultiplet scalars should coordinatize a

hyperkähler cone. Furthermore the various formulae for the action and the supersymmetry

transformation rules should be evaluated in the presence of a superconformal background,

so that the action and transformation rules will also involve the superconformal fields. This

has not yet been worked out in detail for N = 2 supergravity, although it is in principle

straightforward. In view of the fact that gaugings of N = 4 and N = 8 supergravity have

already been worked out using the same formalism as in this paper [2, 3], no complications

are expected. Note that Fayet-Iliopoulos terms do not exist in N = 2 supergravity because

the Killing potentials cannot contain arbitrary integration constants as those would break

the scale invariance of the hyperkähler cone.

The potential is rather independent of all these details, although it must be rewritten

in terms of the appropriate quantities, as was for instance demonstrated in [24]. It was

already shown in [1] that the theory simplifies considerably for abelian gaugings where

TMN
P = 0 and where the potential is exclusively generated by the hypermultiplet charges.

Making use of the steps described in [24], it is rather straightforward to derive the potential

(as was already foreseen in [1]), which takes precisely the form conjectured quite some time

ago (c.f. eq. (3.16) in [28]).

Another application concerns domain wall solutions. In [29] such solutions were studied

in N = 2 supergravity with both electric and magnetic charges. The transformation rules

postulated in that work are in qualitative agreement with the ones established in this paper,

at least as far as the terms are concerned that are relevant for the potential (observe that a

magnetic gauge field was absent). A more precise comparison again requires the extention

of our results to the case of local supersymmetry.
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